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Neural Networks

https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Neural_network_example.svg/330px-Neural_network_example.svg.png



Deep Learning Framework Implementation

• Knowing the things under the hood
• Deployment
• Deployment on emerging hardware
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Deep Learning Language

• How to represent a deep neural network?
• Abstraction

• How to implement/deploy the abstraction deep neural network?
• Build tensor operations workflow
• Implement high-performance low-level operations



Perceptron

• The perceptron was invented in 1943 by 
McCulloch and Pitts.

• The first implementation was a machine 
built in 1958 at the Cornell Aeronautical 
Laboratory by Frank Rosenblatt

https://upload.wikimedia.org/wikipedia/en/5/52/Mark_I_perceptron.jpeg



Perceptron

• Linear Layer
• Matrix multiplication
• Addition

• ReLU



Tensor Operations

• Element-wise add
• Element-wise plus
• Element-wise division
• Hadamard product
• Matrix multiplication
• Batched matrix multiplication
• More linear algebra operations…
• Collect, Scatter, Reduce…



Libraries
• Numpy
• Blas
• cuBlas
• cuSparse
• MKL
• TensorFlow
• PyTorch
• PaddlePaddle
• MXNet
• …



Lazy Evaluation and Code Generation
c = a + b
d = c * 2

for i = 1 to n do
c[i] = a[i] + b[i]

for i = 1 to n do
d[i] = c[i] * 2

for i = 1 to n do
d[i] = (a[i] + b[i]) * 2



Optimizations

• Graph minimization and canonicalization
• Constant Folding
• Common subexpression elimination
• Remove unnecessary operations

• Algebraic simplification and reassociation
• Copy propagation



Graph Optimizer

• Graph minimization and canonicalization
• Constant Folding
• Common subexpression elimination
• Remove unnecessary operations

• Algebraic simplification and reassociation
• Copy propagation



Meta Optimizer

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



Constant Folding Optimizer



Constant Folding Optimizer: SimplifyGraph()
• Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, 

Slice(x) = x, etc.
• Rewrites that enable further constant folding
• Arithmetic rewrites that rely on known shapes or inputs, e.g.

• Constant push-down:
• Add(c1, Add(x, c2)) => Add(x, c1 + c2)
• ConvND(c1 * x, c2) => ConvND(x, c1 * c2)

• Partial constfold:
• AddN(c1, x, c2, y) => AddN(c1 + c2, x, y),
• Concat([x, c1, c2, y]) = Concat([x, Concat([c1, c2]), y)

• Operations with neutral & absorbing elements:
• x * Ones(s) => Identity(x), if shape(x) == output_shape
• x * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
• Same for x + Zeros(s) , x / Ones(s), x * Zeros(s) etc.
• Zeros(s) - y => Neg(y), if shape(y) == output_shape
• Ones(s) / y => Recip(y) if shape(y) == output_shape



Arithmetic Optimizer



Arithmetic Optimizer
• Arithmetic simplifications

• Flattening: a+b+c+d => AddN(a, b, c, d)
• Hoisting: AddN(x * a, b * x, x * c) => x * AddN(a+b+c)
• Simplification to reduce number of nodes:

• Numeric: x+x+x => 3*x
• Logic: !(x > y) => x <= y

• Broadcast minimization
• Example: (matrix1 + scalar1) + (matrix2 + scalar2) => (matrix1 + matrix2) + (scalar1 + scalar2)

• Better use of intrinsics
• Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)

• Remove redundant ops or op pairs
• Transpose(Transpose(x, perm), inverse_perm)
• BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
• Pairs of elementwise involutions f(f(x)) => x (Neg, Conj, Reciprocal, LogicalNot)
• Repeated Idempotent ops f(f(x)) => f(x) (DeepCopy, Identity, CheckNumerics...)

• Hoist chains of unary ops at Concat/Split/SplitV
• Concat([Exp(Cos(x)), Exp(Cos(y)), Exp(Cos(z))]) => Exp(Cos(Concat([x, y, z])))
• [Exp(Cos(y)) for y in Split(x)] => Split(Exp(Cos(x), num_splits)



Tensor

• Dense
• Column major
• Row major
• Stride

• Sparse
• Compressed representation
• Set intersection



Differentiation

• Numerical differentiation
• Symbolic differentiation

• Chain rules
• Forward mode auto differentiation
• Reverse mode auto differentiation



Computational Graph

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf



Forward Mode Auto Differentiation



Reverse Mode Auto Differentiation



Reverse Mode Auto Differentiation



Backprop V.S. Reverse Mode AD
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