
Neural Network Preliminary
Tensor Computing

Weijie Zhao



Neural Network Preliminary
Tensor Computing

Weijie Zhao

•Scalar
•Vector
•Matrix
•Tensor

•Rank
•Dimension



Neural Network Preliminary
Tensor Computing

Weijie Zhao

•Scalar
•Vector
•Matrix
•Tensor

•Rank
•Dimension

Matrix



Neural Network Preliminary
Tensor Computing

Weijie Zhao

•Scalar
•Vector
•Matrix
•Tensor

•Rank
•Dimension

Matrix

•Matrix multiplication
•Non-linear activation
•Gradient descent



Neural Network Preliminary
Tensor Computing

Weijie Zhao

•Scalar
•Vector
•Matrix
•Tensor

•Rank
•Dimension

Matrix

•Matrix multiplication
•Non-linear activation
•Gradient descent Graduate student descent



Neural Networks

https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Neural_network_example.svg/330px-Neural_network_example.svg.png



Deep Learning Framework Implementation

• Knowing the things under the hood
• Deployment
• Deployment on emerging hardware



Deep Learning Language

• How to represent a deep neural network?



Deep Learning Language

• How to represent a deep neural network?
• Abstraction



Deep Learning Language

• How to represent a deep neural network?
• Abstraction

• How to implement/deploy the abstraction deep neural network?



Deep Learning Language

• How to represent a deep neural network?
• Abstraction

• How to implement/deploy the abstraction deep neural network?
• Build tensor operations workflow
• Implement high-performance low-level operations



Perceptron

• The perceptron was invented in 1943 by 
McCulloch and Pitts.

• The first implementation was a machine 
built in 1958 at the Cornell Aeronautical 
Laboratory by Frank Rosenblatt

https://upload.wikimedia.org/wikipedia/en/5/52/Mark_I_perceptron.jpeg



Perceptron

• Linear Layer
• Matrix multiplication
• Addition

• ReLU



Tensor Operations

• Element-wise add
• Element-wise plus
• Element-wise division
• Hadamard product
• Matrix multiplication
• Batched matrix multiplication
• More linear algebra operations…
• Collect, Scatter, Reduce…



Libraries
• Numpy
• Blas
• cuBlas
• cuSparse
• MKL
• TensorFlow
• PyTorch
• PaddlePaddle
• MXNet
• …



Lazy Evaluation and Code Generation
c = a + b
d = c * 2

for i = 1 to n do
c[i] = a[i] + b[i]

for i = 1 to n do
d[i] = c[i] * 2

for i = 1 to n do
d[i] = (a[i] + b[i]) * 2



Optimizations

• Graph minimization and canonicalization
• Constant Folding
• Common subexpression elimination
• Remove unnecessary operations

• Algebraic simplification and reassociation
• Copy propagation



Graph Optimizer

• Graph minimization and canonicalization
• Constant Folding
• Common subexpression elimination
• Remove unnecessary operations

• Algebraic simplification and reassociation
• Copy propagation



Meta Optimizer

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



Constant Folding Optimizer



Constant Folding Optimizer: SimplifyGraph()
• Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, 

Slice(x) = x, etc.
• Rewrites that enable further constant folding
• Arithmetic rewrites that rely on known shapes or inputs, e.g.

• Constant push-down:
• Add(c1, Add(x, c2)) => Add(x, c1 + c2)
• ConvND(c1 * x, c2) => ConvND(x, c1 * c2)

• Partial constfold:
• AddN(c1, x, c2, y) => AddN(c1 + c2, x, y),
• Concat([x, c1, c2, y]) = Concat([x, Concat([c1, c2]), y)

• Operations with neutral & absorbing elements:
• x * Ones(s) => Identity(x), if shape(x) == output_shape
• x * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
• Same for x + Zeros(s) , x / Ones(s), x * Zeros(s) etc.
• Zeros(s) - y => Neg(y), if shape(y) == output_shape
• Ones(s) / y => Recip(y) if shape(y) == output_shape



Arithmetic Optimizer



Arithmetic Optimizer
• Arithmetic simplifications

• Flattening: a+b+c+d => AddN(a, b, c, d)
• Hoisting: AddN(x * a, b * x, x * c) => x * AddN(a+b+c)
• Simplification to reduce number of nodes:

• Numeric: x+x+x => 3*x
• Logic: !(x > y) => x <= y

• Broadcast minimization
• Example: (matrix1 + scalar1) + (matrix2 + scalar2) => (matrix1 + matrix2) + (scalar1 + scalar2)

• Better use of intrinsics
• Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)

• Remove redundant ops or op pairs
• Transpose(Transpose(x, perm), inverse_perm)
• BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
• Pairs of elementwise involutions f(f(x)) => x (Neg, Conj, Reciprocal, LogicalNot)
• Repeated Idempotent ops f(f(x)) => f(x) (DeepCopy, Identity, CheckNumerics...)

• Hoist chains of unary ops at Concat/Split/SplitV
• Concat([Exp(Cos(x)), Exp(Cos(y)), Exp(Cos(z))]) => Exp(Cos(Concat([x, y, z])))
• [Exp(Cos(y)) for y in Split(x)] => Split(Exp(Cos(x), num_splits)



Tensor

• Dense
• Column major
• Row major
• Stride

• Sparse
• Compressed representation
• Set intersection



Differentiation

• Numerical differentiation
• Symbolic differentiation

• Chain rules
• Forward mode auto differentiation
• Reverse mode auto differentiation



Computational Graph

https://dlsyscourse.org/slides/4-automatic-differentiation.pdf



Forward Mode Auto Differentiation



Reverse Mode Auto Differentiation



Reverse Mode Auto Differentiation



Backprop V.S. Reverse Mode AD


	Neural Network Preliminary�Tensor Computing
	Neural Network Preliminary�Tensor Computing
	Neural Network Preliminary�Tensor Computing
	Neural Network Preliminary�Tensor Computing
	Neural Network Preliminary�Tensor Computing
	Neural Networks
	Deep Learning Framework Implementation
	Deep Learning Language
	Deep Learning Language
	Deep Learning Language
	Deep Learning Language
	Perceptron
	Perceptron
	Tensor Operations
	Libraries
	Lazy Evaluation and Code Generation
	Optimizations
	Graph Optimizer
	Meta Optimizer
	Constant Folding Optimizer
	Constant Folding Optimizer: SimplifyGraph()
	Arithmetic Optimizer
	Arithmetic Optimizer
	Tensor
	Differentiation
	Computational Graph
	Forward Mode Auto Differentiation
	Reverse Mode Auto Differentiation
	Reverse Mode Auto Differentiation
	Backprop V.S. Reverse Mode AD

