Neural Network Preliminary Tensor Computing

10/12/2023
-scalar Neural Network Preliminary
-Vector

- Matrix

Tensor Computing

-Tensor
-Rank
-Dimension

Weijie Zhao
10/12/2023
-scalar Neural Network Preliminary

- Vector
- Matrix
-Tensor Tensor Computing Matrix
-Rank
-Dimension
Weijie Zhao
10/12/2023
-Matrix multiplication
-Non-linear activation
-Gradient descent
-scalar Neural Network Preliminary
-Vector
- Matrix
- Tensor
-Rank
-Dimension Tensor Computing Matrix

Weijie Zhao
10/12/2023

- Matrix multiplication
-Non-linear activation
-Gradient descent Graduate student descent
.scalar Neural Network Preliminary
-Vector
- Matrix
- Tensor
-Rank
-Dimension Tensor Computing Matrix

Weijie Zhao
10/12/2023

Neural Networks

Deep Learning Framework Implementation

- Knowing the things under the hood
- Deployment
- Deployment on emerging hardware

Deep Learning Language

- How to represent a deep neural network?

Deep Learning Language

- How to represent a deep neural network?
- Abstraction

Deep Learning Language

- How to represent a deep neural network?
- Abstraction
- How to implement/deploy the abstraction deep neural network?

Deep Learning Language

- How to represent a deep neural network?
- Abstraction
- How to implement/deploy the abstraction deep neural network?
- Build tensor operations workflow
- Implement high-performance low-level operations

Perceptron

- The perceptron was invented in 1943 by McCulloch and Pitts.
- The first implementation was a machine built in 1958 at the Cornell Aeronautical Laboratory by Frank Rosenblatt

$$
f(\mathbf{x})= \begin{cases}1 & \text { if } \mathbf{w} \cdot \mathbf{x}+b>0 \\ 0 & \text { otherwise }\end{cases}
$$

Perceptron

- Linear Layer
- Matrix multiplication
- Addition
- ReLU

Tensor Operations

- Element-wise add
- Element-wise plus
- Element-wise division
- Hadamard product
- Matrix multiplication
- Batched matrix multiplication
- More linear algebra operations...
- Collect, Scatter, Reduce...

Libraries

- Numpy
- Blas
- cuBlas
- cuSparse
- MKL
- TensorFlow
- PyTorch
- PaddlePaddle
- MXNet
-...

Lazy Evaluation and Code Generation

$$
\begin{aligned}
& \mathrm{c}=\mathrm{a}+\mathrm{b} \\
& \mathrm{~d}=\mathrm{c} * 2
\end{aligned}
$$

for $\mathrm{i}=1$ to n do

$$
\mathrm{c}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+\mathrm{b}[\mathrm{i}]
$$

for $\mathrm{i}=1$ to n do

$$
\mathrm{d}[\mathrm{i}]=\mathrm{c}[\mathrm{i}] * 2
$$

for $\mathrm{i}=1$ to n do

$$
\mathrm{d}[\mathrm{i}]=(\mathrm{a}[\mathrm{i}]+\mathrm{b}[\mathrm{i}]) * 2
$$

Optimizations

- Graph minimization and canonicalization
- Constant Folding
- Common subexpression elimination
- Remove unnecessary operations
- Algebraic simplification and reassociation
- Copy propagation

Graph Optimizer

- Graph minimization and canonicalization
- Constant Folding
- Common subexpression elimination
- Remove unnecessary operations
- Algebraic simplification and reassociation
- Copy propagation

Meta Optimizer

```
i = 0
while i < config.meta_optimizer_iterations (default=2):
    Pruning() # Remove nodes not in fanin of outputs, unused functions
    Function () # Function specialization & inlining, symbolic gradient inlining
    DebugStripper ()* # Remove assert, print, check_numerics
    ConstFold() # Constant folding and materialization
    Shape()
    Remapper()
    Arithmetic() # Node deduping (CSE) & arithmetic simplification
    if i==0: Layout() # Layout optimization for GPU
    if i==0: Memory() # Swap-out/Swap-in, Recompute*, split large nodes
    Loop () # Loop Invariant Node Motion*, Stack Push & Dead Node Elimination
    Dependency () # Prune/optimize control edges, NoOp/ldentity node pruning
    Custom() # Run registered custom optimizers (e.g. TensorRT)
    i += 1
```


Constant Folding Optimizer

do:
InferShapesStaticallv() \# Fixed-point iteration with symbolic shapes graph_changed = Materializeconstants () \# grad broadcast, reduction dims $q=$ NodesWithKnownInputs()
while not q.empty():
node $=q \cdot p o p()$
graph_changed |= FoldGraph(node, \&q) \# Evaluate node on host graph_changed |= SimolifvGraph()
while graph_changed

Constant Folding Optimizer: SimplifyGraph()

- Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, Slice $(\mathrm{x})=\mathrm{x}$, etc.
- Rewrites that enable further constant folding
- Arithmetic rewrites that rely on known shapes or inputs, e.g.
- Constant push-down:
- $\operatorname{Add}(\mathrm{c} 1, \operatorname{Add}(\mathrm{x}, \mathrm{c} 2))=>\operatorname{Add}(\mathrm{x}, \mathrm{c} 1+\mathrm{c} 2)$
- $\operatorname{ConvND}(\mathrm{c} 1 * \mathrm{x}, \mathrm{c} 2)=>\operatorname{ConvND}(\mathrm{x}, \mathrm{c} 1 * \mathrm{c} 2)$
- Partial constfold:
- $\operatorname{AddN}(\mathrm{c} 1, \mathrm{x}, \mathrm{c} 2, \mathrm{y})=>\operatorname{AddN}(\mathrm{c} 1+\mathrm{c} 2, \mathrm{x}, \mathrm{y})$,
- $\operatorname{Concat}([x, ~ c 1, ~ c 2, ~ y])=\operatorname{Concat}([x, \operatorname{Concat}([c 1, c 2]), y)$
- Operations with neutral \& absorbing elements:
- x * Ones(s) => Identity (x), if shape (x) == output_shape
- x * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
- Same for $\mathrm{x}+\mathrm{Zeros}(\mathrm{s})$, $\mathrm{x} / \mathrm{Ones}(\mathrm{s}), \mathrm{x} *$ Zeros(s) etc.
- Zeros(s) - y => Neg(y), if shape(y) == output_shape
- Ones(s) / y $=>\operatorname{Recip}(\mathrm{y})$ if $\operatorname{shape}(\mathrm{y})==$ output_shape

Arithmetic Optimizer

```
DedupComputations() :
do:
    stop = true
    UniqueNodes reps
    for node in graph.nodes():
        rep = reps. FindOrInsert(node, IsCommutative (node))
        if rep == node or !SafeToDedup (node, rep):
            continue
        for fanout in node.fanout():
            ReplaceInputs (fanout, node, rep)
        stop = false
    while !stop
```


Arithmetic Optimizer

- Arithmetic simplifications
- Flattening: $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=>\operatorname{AddN}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$
- Hoisting: $\operatorname{AddN}(\mathrm{x} * \mathrm{a}, \mathrm{b} * \mathrm{x}, \mathrm{x} * \mathrm{c})=>\mathrm{x} * \operatorname{AddN}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
- Simplification to reduce number of nodes:
- Numeric: $x+x+x=>3 * x$
- Logic: ! $(\mathrm{x}>\mathrm{y})=>\mathrm{x}<=\mathrm{y}$
- Broadcast minimization
- Example: $($ matrix $1+$ scalar 1$)+($ matrix $2+$ scalar 2$)=>($ matrix $1+$ matrix 2$)+($ scalar1 + scalar2 $)$
- Better use of intrinsics
- Matmul(Transpose(x), y$)=>\operatorname{Matmul}(\mathrm{x}, \mathrm{y}$, transpose_x=True)
- Remove redundant ops or op pairs
- Transpose(Transpose(x, perm), inverse_perm)
- BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
- Pairs of elementwise involutions $\mathrm{f}(\mathrm{f}(\mathrm{x}))=>\mathrm{x}($ Neg, Conj, Reciprocal, LogicalNot)
- Repeated Idempotent ops $\mathrm{f}(\mathrm{f}(\mathrm{x}))=>\mathrm{f}(\mathrm{x})$ (DeepCopy, Identity, CheckNumerics...)
- Hoist chains of unary ops at Concat/Split/SplitV
- $\operatorname{Concat}([\operatorname{Exp}(\operatorname{Cos}(\mathrm{x})), \operatorname{Exp}(\operatorname{Cos}(\mathrm{y})), \operatorname{Exp}(\operatorname{Cos}(\mathrm{z}))])=>\operatorname{Exp}(\operatorname{Cos}(\operatorname{Concat}([\mathrm{x}, \mathrm{y}, \mathrm{z}])))$
- $[\operatorname{Exp}(\operatorname{Cos}(\mathrm{y}))$ for y in $\operatorname{Split}(\mathrm{x})]=\mathrm{Split}(\operatorname{Exp}(\operatorname{Cos}(\mathrm{x})$, num_splits $)$

Tensor

- Dense
- Column major
- Row major
- Stride
- Sparse
- Compressed representation
- Set intersection

Differentiation

- Numerical differentiation
- Symbolic differentiation
- Chain rules
- Forward mode auto differentiation
- Reverse mode auto differentiation

HW2 Review

- 18/19 submissions
- 9/18 correct solutions
- Fastest: Dade Wood 124.16s
- Runner-ups:
- Vivek Chandra Hundi Nagaraju 135.4s
- Karamcheti Pritham 141.95s
- 7/9 correct solutions finishes in 248.32 s
- X line edits in resubmission caps the score to $10-\mathrm{X}$
- The grade will be finalized by the end of $10 / 24$

Projects 50 pts

- Cross-platform compilation 2
- High-performance implementation on CPU 5
- High-performance implementation on GPU 5
- Illegal input handling 2
- Multi-language support 1 for each language
- Non-trivial optimization/techniques 1 for each optimization
- Tasks: classification, ranking, regression, retrieval, clustering 1 for each task
- Documentation 2
- Benchmarking with baselines 5
- Proposal 10
- Demo

10

- Defend Challenging 10

Challenging

- Each group has two chances to challenge the contribution of other group
- An incorrect challenge will cost you one chance
- You cannot challenge without any remaining chance
- Challenge is anonymous
- A successful challenge gives you half of the points you challenged

Example Projects

- Toolbox of linear classifiers with kernel method support
- including SVM, linear regression, and logistic regression
- Gradient boosting
- Deep learning framework
- Approximate nearest neighbor search framework (KNN)

HW 3: Tensor Library

- Write a tensor library that is callable from python
- No $3{ }^{\text {rd }}$ party code is allowed. Numpy is not allowed.
- 10 test cases. Each case weights 1 pt.
- The compilation is considered failed if it does not finish in 5 minute.
- A test case is considered incorrect if it does not finish in 2 minutes.
- The numeric error of each printed value must be within $1 \mathrm{e}-3$ to the correct result.
- Correct GPU solutions will get 5 pts bonus.
- The summation of the execution time across 10 cases will be used to rank correct solutions.
- Due: 10/30/2023 5:00 pm EST

Testing Environment

- ssh yourusername@granger.cs.rit.edu
- Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
- 48 threads in total (2 sockets, 12 cores per socket, 2 threads per core)
- 251 GB memory
- GPU: Tesla P4
- pybind11 2.10.0 installed (pip3 install pybind11)
- Testing limit:
- 8 threads
taskset -c
- 1 GPU

pybind11

\#include <pybind11/pybind11.h>
namespace py $=$ pybind 11 ;
int $\operatorname{add}($ int $i, i n t j)\{$

```
    return i + j;
```

\}
\#include <pybind11/pybind11.h>

```
int add(int i, int j) {
```

 return \(\mathrm{i}+\mathrm{j}\);
 \}

PYBIND11_MODULE(example, m) \{

m.doc ()$=$ "pybind11 example plugin"; // optional module docstring

\$ python

>>> import example
>>> example.add(1, 2)
3
\ggg
m.def("add", \&add, "A function which adds two numbers", py::arg("i"), py::arg("j"));

```
int add(int i = 1, int j=2) {
    return i + j;
}
```

m.def("add", \&add, "A function which adds two numbers", py::arg("i") = 1, py::arg("j") = 2);
m.def("add", \&add, "A function that adds two numbers");
\}

