
Neural Network Preliminary
Tensor Computing

Weijie Zhao

10/12/2023



Neural Network Preliminary
Tensor Computing

Weijie Zhao

10/12/2023

•Scalar

•Vector

•Matrix

•Tensor

•Rank

•Dimension



Neural Network Preliminary
Tensor Computing

Weijie Zhao

10/12/2023

•Scalar

•Vector

•Matrix

•Tensor

•Rank

•Dimension

Matrix



Neural Network Preliminary
Tensor Computing

Weijie Zhao

10/12/2023

•Scalar

•Vector

•Matrix

•Tensor

•Rank

•Dimension

Matrix

•Matrix multiplication

•Non-linear activation

•Gradient descent



Neural Network Preliminary
Tensor Computing

Weijie Zhao

10/12/2023

•Scalar

•Vector

•Matrix

•Tensor

•Rank

•Dimension

Matrix

•Matrix multiplication

•Non-linear activation

•Gradient descent Graduate student descent



Neural Networks

https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Neural_network_example.svg/330px-Neural_network_example.svg.png



Deep Learning Framework Implementation

• Knowing the things under the hood

• Deployment

• Deployment on emerging hardware



Deep Learning Language

• How to represent a deep neural network?



Deep Learning Language

• How to represent a deep neural network?

• Abstraction



Deep Learning Language

• How to represent a deep neural network?

• Abstraction

• How to implement/deploy the abstraction deep neural network?



Deep Learning Language

• How to represent a deep neural network?

• Abstraction

• How to implement/deploy the abstraction deep neural network?

• Build tensor operations workflow

• Implement high-performance low-level operations



Perceptron

• The perceptron was invented in 1943 by 
McCulloch and Pitts.

• The first implementation was a machine 
built in 1958 at the Cornell Aeronautical 
Laboratory by Frank Rosenblatt

https://upload.wikimedia.org/wikipedia/en/5/52/Mark_I_perceptron.jpeg



Perceptron

• Linear Layer

• Matrix multiplication

• Addition

• ReLU



Tensor Operations

• Element-wise add

• Element-wise plus

• Element-wise division

• Hadamard product

• Matrix multiplication

• Batched matrix multiplication

• More linear algebra operations…

• Collect, Scatter, Reduce…



Libraries

• Numpy

• Blas

• cuBlas

• cuSparse

• MKL

• TensorFlow

• PyTorch

• PaddlePaddle

• MXNet

• …



Lazy Evaluation and Code Generation

c = a + b

d = c * 2

for i = 1 to n do

c[i] = a[i] + b[i]

for i = 1 to n do

d[i] = c[i] * 2

for i = 1 to n do

d[i] = (a[i] + b[i]) * 2



Optimizations

• Graph minimization and canonicalization

• Constant Folding

• Common subexpression elimination

• Remove unnecessary operations

• Algebraic simplification and reassociation

• Copy propagation



Graph Optimizer

• Graph minimization and canonicalization

• Constant Folding

• Common subexpression elimination

• Remove unnecessary operations

• Algebraic simplification and reassociation

• Copy propagation



Meta Optimizer

https://web.stanford.edu/class/cs245/slides/TFGraphOptimizationsStanford.pdf



Constant Folding Optimizer



Constant Folding Optimizer: SimplifyGraph()
• Removes trivial ops, e.g. identity Reshape, Transpose of 1-d tensors, 

Slice(x) = x, etc.

• Rewrites that enable further constant folding

• Arithmetic rewrites that rely on known shapes or inputs, e.g.
• Constant push-down:

• Add(c1, Add(x, c2)) => Add(x, c1 + c2)
• ConvND(c1 * x, c2) => ConvND(x, c1 * c2)

• Partial constfold:
• AddN(c1, x, c2, y) => AddN(c1 + c2, x, y),
• Concat([x, c1, c2, y]) = Concat([x, Concat([c1, c2]), y)

• Operations with neutral & absorbing elements:
• x * Ones(s) => Identity(x), if shape(x) == output_shape
• x * Ones(s) => BroadcastTo(x, Shape(s)), if shape(s) == output_shape
• Same for x + Zeros(s) , x / Ones(s), x * Zeros(s) etc.
• Zeros(s) - y => Neg(y), if shape(y) == output_shape
• Ones(s) / y => Recip(y) if shape(y) == output_shape



Arithmetic Optimizer



Arithmetic Optimizer
• Arithmetic simplifications

• Flattening: a+b+c+d => AddN(a, b, c, d)
• Hoisting: AddN(x * a, b * x, x * c) => x * AddN(a+b+c)
• Simplification to reduce number of nodes:

• Numeric: x+x+x => 3*x

• Logic: !(x > y) => x <= y

• Broadcast minimization
• Example: (matrix1 + scalar1) + (matrix2 + scalar2) => (matrix1 + matrix2) + (scalar1 + scalar2)

• Better use of intrinsics
• Matmul(Transpose(x), y) => Matmul(x, y, transpose_x=True)

• Remove redundant ops or op pairs
• Transpose(Transpose(x, perm), inverse_perm)
• BitCast(BitCast(x, dtype1), dtype2) => BitCast(x, dtype2)
• Pairs of elementwise involutions f(f(x)) => x (Neg, Conj, Reciprocal, LogicalNot)
• Repeated Idempotent ops f(f(x)) => f(x) (DeepCopy, Identity, CheckNumerics...)

• Hoist chains of unary ops at Concat/Split/SplitV
• Concat([Exp(Cos(x)), Exp(Cos(y)), Exp(Cos(z))]) => Exp(Cos(Concat([x, y, z])))
• [Exp(Cos(y)) for y in Split(x)] => Split(Exp(Cos(x), num_splits)



Tensor

• Dense

• Column major

• Row major

• Stride

• Sparse

• Compressed representation

• Set intersection



Differentiation

• Numerical differentiation

• Symbolic differentiation

• Chain rules

• Forward mode auto differentiation

• Reverse mode auto differentiation



HW2 Review

• 18/19 submissions

• 9/18 correct solutions

• Fastest: Dade Wood 124.16s

• Runner-ups: 

• Vivek Chandra Hundi Nagaraju135.4s

• Karamcheti Pritham 141.95s

• 7/9 correct solutions finishes in 248.32s

• X line edits in resubmission caps the score to 10-X

• The grade will be finalized by the end of 10/24



Projects 50 pts
• Cross-platform compilation 2

• High-performance implementation on CPU 5

• High-performance implementation on GPU 5

• Illegal input handling 2

• Multi-language support 1 for each language

• Non-trivial optimization/techniques 1 for each optimization

• Tasks: classification, ranking, regression, retrieval, clustering 1 for each task

• Documentation 2

• Benchmarking with baselines 5

• Proposal 10

• Demo 10

• Defend Challenging 10

Required



Challenging

• Each group has two chances to challenge the contribution of other 
group

• An incorrect challenge will cost you one chance

• You cannot challenge without any remaining chance

• Challenge is anonymous 

• A successful challenge gives you half of the points you challenged



Example Projects

• Toolbox of linear classifiers with kernel method support

• including SVM, linear regression, and logistic regression

• Gradient boosting

• Deep learning framework

• Approximate nearest neighbor search framework (KNN)



HW 3: Tensor Library

• Write a tensor library that is callable from python

• No 3rd party code is allowed. Numpy is not allowed.

• 10  test cases. Each case weights 1 pt.

• The compilation is considered failed if it does not finish in 5 minute.

• A test case is considered incorrect if it does not finish in 2 minutes.

• The numeric error of each printed value must be within 1e-3 to the correct result.

• Correct GPU solutions will get 5 pts bonus.

• The summation of the execution time across 10 cases will be used to rank correct
solutions.

• Due: 10/30/2023 5:00 pm EST



Testing Environment

• ssh yourusername@granger.cs.rit.edu

• Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

• 48 threads in total (2 sockets, 12 cores per socket, 2 threads per core)

• 251 GB memory

• GPU: Tesla P4

• pybind11 2.10.0 installed (pip3 install pybind11)

• Testing limit:
• 8 threads taskset -c

• 1 GPU



pybind11

#include <pybind11/pybind11.h>

namespace py = pybind11;

int add(int i, int j) {

return i + j;

}

#include <pybind11/pybind11.h>

int add(int i, int j) {

return i + j;

}

PYBIND11_MODULE(example, m) {

m.doc() = "pybind11 example plugin"; // optional module docstring

m.def("add", &add, "A function that adds two numbers");

}

$ python

>>> import example

>>> example.add(1, 2)

3

>>>

m.def("add", &add, "A function which adds two numbers",  py::arg("i"), py::arg("j"));

int add(int i = 1, int j = 2) {

return i + j;

}

m.def("add", &add, "A function which adds two numbers",

py::arg("i") = 1, py::arg("j") = 2);


