
Trustworthy Machine Learning Systems

Weijie Zhao

03/28/2024



Machine Learning Models in Practice



Backdoor Attacks



Backdoor Attacks Adversarial Attacks



Backdoor Injection



Fixed Trigger



LIRA: Learnable, Imperceptible and Robust 
Backdoor Attack



LIRA Learning Algorithm



Experimental Results



Integrity Authentication

▪ Machine learning as a service (MLaaS)

▪ The supply chain of models:

• multiple parties and vendors

• data, algorithm, and infrastructure are vulnerable to breach

▪ Maliciously altered models

• poisoning or backdoor attacks

• impair the integrity, reputation, and profit of the model owner
Owner

Users

Cloud

Deploy model

Query model



Model Authentication



Prediction Flipping



Boosted Tree Models

▪ Ensemble of decision trees

▪ Typically produce robust and 

fairly accurate learning results

▪ Interpretability
Inference example for 2 iterations and 3 classes.

(For simplicity, the learning rate is assumed to be 𝜈 = 1 here.)



Challenges

▪ Deep learning integrity authentication methods require gradients

• tree models are indifferentiable

▪ Many deep learning signature embedding methods require retraining

• appending more trees increases model size and hurts the inference performance

▪ Replacing a subset of existing trees is still an open research

• a tree is generated on the results of the previous trees



Authentication Framework

▪ Threat model

• model owner can verify the presence of the signature by using the signature 

keys via the prediction API

• model owner only needs access to the predicted class during the authentication



Signature Key Candidate Locating

▪ We can construct a valid input space by searching the split 

conditions without the training data

▪ Given 𝑀 × 𝐾 trees, we are going to find 𝑆 distinct signature keys

• the maximum gap for each signature key is minimized

• gap denotes the difference between the largest 𝐹𝑖,𝑘 and the second largest 𝐹𝑖,𝑘′

• class 𝑘 is the original prediction

• class 𝑘′ is the class we are going to flip to after embedding the signature



Heuristic Searching

▪ The signature key candidate 

locating problem is NP-Hard

▪ We are not required to have the 

exact best 𝑆 signature keys

• when the gap is sufficiently small, 

changing the prediction value on a 

terminal node will not dramatically 

affect predictions for other instances

Algorithm: Random-DFS



Signature Key Selection

▪ After obtaining S × 𝛼 signature key 

candidates, we are required to 

select S independent signature keys

• given a collection of instances, they are 

independent if and only if: 

▪ for each instance, there exists a terminal 

node on its highest and second-highest 

prediction classes such that the terminal 

node is not referenced by any other 

instances in this collection

An example for signature key selection



Experimental Evaluation

▪ How many signature keys can be generated in one pass?

▪ How does the signature embedding procedure affect the model 

functionality? 

▪ How effective is the embedded signature in detecting malicious 

modification, i.e., when the attacker adds/removes decision trees?



Setup

▪ We evaluate our proposed 

algorithm on 20 public datasets



Independent Signature Keys

▪ Numbers of selected independent 

signature keys

• 𝑆 = 40

• 𝛼 = 8

• max search step = 1,000

• 𝐽 is the number of terminal nodes



Searching factor 𝛼

▪ Searching factor 𝛼 on 

balancing the signature key 

candidate searching time and 

the number of selected 

independent signature keys 

with 𝐽 = 20 and 50 iterations



Model Functionality

▪ The number of changed 

predictions on test datasets 

with 𝐽 = 20 and 𝛼 = 8 

embedded signatures



Attacking The percentage of the signature key outputs change



Conclusions

▪ We introduce a novel model authentication framework and signature 

embedding algorithm for tree models

▪ We propose heuristic searching and selection algorithms to generate 

signature keys and manipulate tree models

▪ Experiments demonstrate that our proposed algorithm can efficiently 

locate signature keys in a few seconds



Conclusions (cont.)

▪ The signature embedding minimally affects the model functionality: 

the change is mostly within 0.03%

▪ Empirical results confirm that adding/removing even a small number 

of trees will destroy embedded signatures

▪ In summary, the generated signature by our proposed method is an 

effective tool for ensuring the integrity of a deployed model that has 

not been tampered with.

▪ Code is available at: https://github.com/pltrees/abcboost


