GPU Computing

Weijie Zhao
02/20/2024

HW2: ANN on DAG

Input:

V DELKABCMQ K lines: $\mathrm{X}[\mathrm{i}] \quad(\mathrm{K}<=\mathrm{V} * \mathrm{D}, 0<=\mathrm{X}[\mathrm{i}]<\mathrm{M})$ E lines: $u[j] v[j] \quad(u[j]<v[j])$

Output:

Q lines: vertex id with the smallest L2 distance to q within max_hop from start_point. Ties are broken by ids.

Q lines: start_point max_hop $\mathrm{q}_{0} \mathrm{q}_{1} \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{D}-1}$
For $\mathrm{i}=\mathrm{K}$ to $\mathrm{V}^{*} \mathrm{D}-1: \quad \mathrm{X}[\mathrm{i}]=(\mathrm{A} * \mathrm{X}[\mathrm{i}-1]+\mathrm{B} * \mathrm{X}[\mathrm{i}-2]+\mathrm{C}) \% \mathrm{M}$ (potential overflow)

V \#vertices
D \#dimensions
E \#edges
L maximum out-degree
$\mathrm{V}<=10^{\wedge} 5 \quad \mathrm{Q}<=10^{\wedge} 4 \quad$ max_hop $<=10$
$\mathrm{D}<=10^{\wedge} 3 \quad \mathrm{M}<=10^{\wedge} 2$
$\mathrm{E}<=10^{\wedge} 6 \quad \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ non-negative 32-bit int
$\mathrm{L}<=63$

Test Environment

- granger.cs.rit.edu
- weasley.cs.rit.edu
- lovegood.cs.rit.edu
- 8 CPU threads and 1 GPU
- Time limit:
- 120 seconds compilation time
- 60 seconds for each test case

```
52 edges = new int[V * (L + 1)];
53 for(int i = 0;i < V;++i){
54 edges[i * (L + 1)] = 0;
55 }
```



```
5 7
5
5 9
6 0
6 1
6 2
```

```
1 7 \text { int nearest_id(int start_point,int max_hop,int* query_data)\{}
18 std::queue<std::pair<int,int>> q;
19 q.push(std::make_pair(start_point,0));
20 int min_d = std::numeric_limits<int>::max();
21 int min_id = -1;
22 while(!q.empty()){
23
24

\section*{GPU Graph Searching Example}


\title{
Tensor Computing in Deep Learning
}

Weijie Zhao
02/20/2024
-Scalar
- Vector
- Matrix
-Tensor
-Rank
-Dimension

Tensor Computing in Deep Learning

Weijie Zhao
02/20/2024
-Scalar
-Vector
- Matrix
-Tensor
-Rank
-Dimension

\section*{Matrix}

\section*{Tenser Computing} in Deep Learning

Weijie Zhao
02/20/2024
-Scalar
- Vector
- Matrix
-Tensor
-Rank
-Dimension

\section*{Matrix} Tenser Computing in Deep Learning

Weijie Zhao
02/20/2024
-Matrix multiplication
-Non-linear activation
- Gradient descent
-Scalar
- Vector
- Matrix
-Tensor
-Rank
-Dimension

\section*{Matrix} Tenser Computing in Deep Learning

Weijie Zhao
02/20/2024
-Matrix multiplication
-Non-linear activation
-Gradient descent
Graduate student descent

\section*{Tensor Operations}
- Element-wise add
- Element-wise plus
- Element-wise division
- Hadamard product
- Matrix multiplication
- Batched matrix multiplication
- More linear algebra operations...
- Collect, Scatter, Reduce...

\section*{Libraries}
- Numpy
- Blas
- cuBlas
- cuSparse
- MKL
- TensorFlow
- PyTorch
- MXNet

\section*{Lazy Evaluation and Code Generation}
\[
\begin{aligned}
& \mathrm{c}=\mathrm{a}+\mathrm{b} \\
& \mathrm{~d}=\mathrm{c} * 2
\end{aligned}
\]
for \(\mathrm{i}=1\) to n do
\[
\mathrm{c}[\mathrm{i}]=\mathrm{a}[\mathrm{i}]+\mathrm{b}[\mathrm{i}]
\]
for \(\mathrm{i}=1\) to n do
\[
\mathrm{d}[\mathrm{i}]=\mathrm{c}[\mathrm{i}] * 2
\]
for \(\mathrm{i}=1\) to n do
\[
\mathrm{d}[\mathrm{i}]=(\mathrm{a}[\mathrm{i}]+\mathrm{b}[\mathrm{i}]) * 2
\]```

