Reconstruction Numbers of Small Graphs

David Rivshin Stanisław Radziszowski Rochester Institute of Technology March 6, 2008

Definitions

- Card of *G*: one vertex removed -1
- Deck(G): multiset of all cards of G $- \int_{2}^{0} \int_{3}^{1} \cdots \int_{3}^{1} \int$
- Extensions(G): all graphs on |V(G)|+1 vertices with induced G

• Edge-deleted versions: ECard, EDeck, EExtensions

Reconstruction Conjectures

- Any graph on 3 or more vertices can be reconstructed its 1-vertex-deleted subgraphs (Kelly, Ulam - 1941)
- Any graph on 4 or more edges can be uniquely identified by the multiset of its 1-edge-deleted subgraphs (Harary - 1964)
- Reconstruction Numbers: (Harary, Plantholt 1985)
 - ∃rn is the smallest number of cards required to reconstruct
 - ∀rn is the minimum number such that any set of ∀rn cards can reconstruct

Recent Results

- $\exists vrn(G) = \exists vrn(\overline{G}), \forall vrn(G) = \forall vrn(\overline{G})$ (Harary, Plantholt - 1985)
- Almost every graph has ∃vrn = ∀vrn = 3 (Myrvold - 1988; Bollobás - 1990)
- Almost every graph has ∃ern = ∀ern = 2 (Lauri - 1992)
- All ∃vrn and ∀vrn up to 10 vertices (McMullen, Radziszowski 2005, 2007)
- Families of graphs with $\forall vrn = 2[\frac{1}{3}(n-1)]$ (Bowler, Brown, Fenner - 2006)

1-Vertex-Deletion Results

		graph order									
		3	4	5	6	7	8	9	10	11	
$\exists vrn_1$	3	4	8	34	150	1,044	12,334	274,666	12,005,156	1,018,997,864	
	4		3		4		8		6		
	5				2		2	2	4		
	6						2				
	7								2		
$\forall vrn_1$	3	4	2	7	8	16	266	45,186	6,054,148	815,604,300	
	4		9	19	56	496	8,308	199,247	5,637,886	199,382,868	
	5			8	90	520	3,584	28,781	301,530	3,922,130	
	6				2	12	284	1,434	10,686	83,730	
	7						4	20	914	4,824	
	8								4	12	

Maximizing Vvrn on 11 vertices

1-Edge-Deletion Results

		graph order										
		3	4	5	6	7	8	9	10	11		
not reconstructible		0	4	4	4	4	4	4	4	4		
$\exists ern_1$	1	3	5	9	18	23	35	46	64	71		
	2			14	115	980	12242	274523	12004951	1018997596		
	3		1	6	16	31	57	81	130	167		
	4				2	5	4	9	10	15		
	5						3	3	5	6		
	6							1	2	2		
	7								1	1		
	8									1		

• The non-reconstructible graphs are:

$$- P_{3} \text{ and } 2K_{2} \qquad \boxed{ } \qquad \qquad \boxed{ } \qquad \boxed{ } \qquad \boxed{ } \qquad$$

1-Edge-Deletion Results

		graph order								
		3	4	5	6	7	8	9	10	11
	1	3	3	3	3	3	3	3	3	3
	2			2	14	19	51	152	1591	2479879
	3		3	8	28	131	1,622	65,814	5,895,154	748,858,136
	4			6	36	285	5,059	141,767	4,976,002	239,960,040
	5			8	46	394	3,880	50,196	925,253	24,213,068
	6			2	15	128	952	10,379	138,350	2,533,007
	7				5	41	520	4,171	47,953	711,284
	8				4	20	136	1,228	11,382	141,498
	9					12	55	521	5,704	67,083
	10					4	26	202	1,854	18,352
	11					2	21	110	1070	9050
	12						8	57	359	2615
	13						4	37	292	2562
¥ ama	14						2	10	68	512
∇ern	15						2	10	66	376
	16							2	23	188
	17								19	106
	18							2	8	30
	19								2	26
	20							2	2	10
	21								2	6
	22								2	8
	23								2	4
	24									2
	25									6
	26								2	2
	28									4
	33									2

Relation Matrix

- Graphs *H_i* are extensions of card in Deck(*G*)
- Reconstruction Numbers can be computed by relating each H_i to cards it shares with G
- Construction requires canonically labeling O(n²2ⁿ) graphs (n=|V(G)|)

Special Sauce

- If *H* is an extension of *C* then *C* must be in Deck(*H*) at least once
- Only the subset of Deck(H) that intersects Deck(G) matters
- if C is in Deck(G) exactly once, then computing Deck(Extensions(C)) is unnecessary
 - This is true over 97% of the time for |V(G)|=11
- Brenden McKay's *Naughty* used to canonically label graphs efficiently

Algorithm

- $\mathcal{D}_G \leftarrow \text{Deck}(G)$
- For each $C_i \in \mathcal{D}_G$:
 - $-\mathcal{H}_i \leftarrow \mathsf{Extensions}(C_i) G$
 - For each *H* ∈ *H_i* m(*H_i*; *H*) ← min(m(Deck(*H*); *C_i*), m(*D_G*; *C_i*)) note: m(*D_G*; *C_i*) = 1 ⇒ m(*H_i*, *H*) = 1
- $\forall rn(G) \leftarrow 1 + max(m(\mathcal{H}; H); H \in \mathcal{H})$
 - where $\mathcal{H} = \bigcup_{C_i \in \mathcal{D}_G} \mathcal{H}_i$
- $\exists \operatorname{rn}(G) \leftarrow \min(|\mathsf{S}|; (\mathsf{S} \subseteq \mathcal{D}_G) \land (\cap_{C_i \in S} \mathbb{B}(\mathcal{H}_i; \operatorname{m}(S; C_i)))))$

- where $\mathbb{B}(\mathcal{H}_i; m) = \{H \mid m(\mathcal{H}_i; H) \ge m\}$

Computation Time

- Most computations on Opteron 248 (2.2GHz) CPUs
- Larger computations used RIT CASCI Cluster (94 1.4GHz P-III CPUs)

		1-vertex del	etion	1-edge deletion		
	unique		ms per		ms per	
V(G)	graphs	total CPU time	graph	total CPU time	graph	
6	156	0.02 seconds	0.26	0.04 seconds	0.25	
7	1044	0.52 seconds	1.07	0.74 seconds	0.71	
8	12346	16.8 seconds	2.45	16.3 seconds	1.32	
9	274668	14.0 minutes	5.52	10 minutes	2.18	
10	12005168	20.9 hours	12.6	10.7 hours	3.21	
11 ⁺	1018997864	174 days	29.5	23.7 days	4.02	

†Computations performed on the CASCI cluster and normalized to Opteron 248 performance

- 165,091,172,592 graphs on 12 vertices
 - Est. vertex-deletion: ~200 equivalent CPU-years
 - Est. edge-deletion: ~12 equivalent CPU-years

Some Open Questions

- If ∃rn(G) < ∀rn(G), then how many subdecks of size s reconstruct G?
- Reconstruction from other types of cards:
 - add vertex in every possible way
 - complement an edge in every possible way
 - add *or* subtract a vertex in every possible way
- What is the Meta-graph of graphs on n vertices with edges colored by number of shared cards?
- What is the relationship between $\forall vrn(G)$ and $\forall vrn(G \cup K_1)$?

Selected References

- K. Asciak, M. Francalanza, J. Lauri, and W. Myrvold. **A survey of some open questions in** reconstruction numbers. Pre-print, 2006.
- K. Asciak and J. Lauri. **On disconnected graph with large reconstruction number**. Ars Combinatoria, 62:173-181, 2002.
- J. Baldwin. **Graph Reconstruction Numbers**. Master's project, Rochester Institute of Technology, 102 Lomb Memorial Drive, Rochester, NY 14623-5608, July 2004.
- B. Bollobás. Almost every graph has reconstruction number three. J. Graph Theory, 14(1):1-4, 1990.
- A. Bowler, P. Brown, and T. Fenner. Families of pairs of graphs with a large number of common cards. Pre-Print, 2006.
- F. Harary and M. Plantholt. **The graph reconstruction number**. J. Graph Theory, 9(4): 451-454, 1985.
- J. Lauri. Vertex-deleted and edge-deleted subgraphs. 1992. University of Malta.
- J. Lauri and R. Scapellato. **Topics in Graph Automorphisms and Reconstruction**. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, May 2003.
- B. D. McKay. **Small graphs are reconstructible**. Australas. J. Combin., 15:123-126, 1997.
- B. McMullen. **Graph Reconstruction Numbers**. Master's project, Rochester Institute of Technology, June 2005.
- B. McMullen and S. P. Radziszowski. **Graph reconstruction numbers**. Journal of Combinatorial Mathematics and Combinatorial Computing, 62, August 2007.
- R. Molina. Correction of a proof on the ally-reconstruction number of a disconnected graph. Ars Combinatoria, 40:59-64, 1995.
- W. Myrvold. **The ally-reconstruction number of a disconnected graph**. Ars Combinatoria, 28:123-127, 1989.
- W. Myrvold. The ally-reconstruction number of a tree with five or more vertices is three. J. Graph Theory, 14(2):149-166, 1990.