Assignment 8 CSCI-661 Foundations of Computer Science Theory due Friday April 26, 2024

1. (5 points)

Let $\Sigma = \{a, b, c\}$. For every listed class of languages over Σ , you have to state whether the class is closed under complementation, concatenation, and intersection. Write "yes" in a box if the class is closed under the operation. Write "no" if the class is not closed under the operation.

closed under	Complementation	Concatenation	Intersection
The co-Turing-recognizable			
languages			
The context-free			
languages			
The Turing-recognizable			
languages			
The decidable languages			
The regular languages			

- 2. (4 points) Draw a Venn diagram that shows the relationships between the following classes of languages:
 - (a) the CFLs.
 - (b) the decidable languages.
 - (c) the languages whose complement is Turing-recognizable.
 - (d) the languages whose complement is decidable.
 - (e) the regular languages.
 - (f) the Turing-recognizable languages.
- 3. (5 points) An unrestricted grammar is like a CFG, except that you can now have any string in $(V \cup \Sigma)^* V (V \cup \Sigma)^*$ on the left-hand side of a rule. Surprisingly, unrestricted grammars generate exactly the Turing-recognizable languages. We will not show this, but we will look at an example.

Given the following grammar, G:

- $S \to ABaC$
- $Ba \rightarrow aaB$
- $BC \rightarrow DC$
- $BC \to E$
- $aD \rightarrow Da$
- $AD \to AB$
- $aE \rightarrow Ea$
- $AE \rightarrow \epsilon$
- (a) Let L(G) be the language generated by G. Give a description of L(G).
- (b) Give a derivation of *aaaaaaaa*. It is ok to combine very similar steps and write \Rightarrow^k when you are taking k very similar steps.
- 4. Solve Exercise 5.3 from the textbook.
- 5. Consider the following problems:

$$ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}, \\ EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}.$$

 ALL_{CFG} is undecidable (you don't have to show this).

 $EQ_{\rm CFG}$ is undecidable (you will show this in the second part of the problem).

- (a) Consider the following faulty proof that EQ_{CFG} is decidable. *M* is a Turing Machine that supposedly decides EQ_{CFG} .
 - M = "On input $\langle G_1, G_2 \rangle$, where G_1 and G_2 are CFGs:
 - i. Construct CFG G_3 such that $L(G_3) = (L(G_1) \cap \overline{L(G_2)}) \cup (L(G_2) \cap \overline{L(G_1)}).$
 - ii. Run TM R from Theorem 4.8. on $\langle G_3 \rangle$.
 - *iii.* If R accepts, accept; otherwise, reject.

What is wrong with the above argument that EQ_{CFG} is decidable?

(b) Use the undecidability of ALL_{CFG} to show that EQ_{CFG} is also undecidable. Use Sipser notation. Alternatively, it is also acceptable to use the "box inside a box" visual description we used in class. For either approach, you must clearly indicate that you are doing a proof by contradiction, and at the conclusion of your argument indicate the contradiction you have reached. 6. The following language:

$$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

is known to be undecidable.

Use this information to prove by contradiction that the following language is undecidable:

 $X = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) \cap L(M_2) = \emptyset \}.$