CSCI-762 Assignment 7

Tom Arnold tca4384@rit.edu

1. (8.6) ElGamal signature variant

a. Describe signature verification

Let's work from the δ equation backwards, the reverse of what is done in the book in 8.3.

$$
\begin{aligned}
& \delta \equiv(x-k y) \times a^{-1}(\bmod p-1) \\
& \delta a \equiv(x-k y)(\bmod p-1) \\
& \delta a+k \gamma \equiv x(\bmod p-1) \\
& a^{\delta a+k \gamma \equiv a^{\times}(\bmod p)} \\
& a^{x} \equiv a^{\delta}+a^{k \gamma}(\bmod p) \\
& \operatorname{ver}(x,(\gamma, \delta))=a^{x} \equiv \beta^{\delta} \gamma^{\gamma}(\bmod p)
\end{aligned}
$$

Let's check our work using the example from the book.

$$
\begin{aligned}
p & =467 \\
\alpha & =2 \\
a & =127 \\
\beta & =132 \\
x & =100 \\
k & =213 \\
\gamma & =29 \\
\delta & =(x-k \gamma) \times a^{-1} \bmod 466 \\
& =(100-213 \times 29) \times 455 \bmod 466 \\
& =(100-119) \ldots \\
& =447 \times 455 \bmod 466 \\
& =209
\end{aligned}
$$

Now using the equation we derived we can verify the signature:

```
\alpha}\mp@subsup{}{}{x}\equiv\mp@subsup{\beta}{}{\delta}\mp@subsup{\gamma}{}{\gamma}(\operatorname{mod}p
2100 \equiv132209 }\times2\mp@subsup{2}{}{29}(\operatorname{mod}467
189 \equiv189 \checkmark
```


b. Describe computational advantage of scheme

One computational advantage of this scheme is that a^{-1} can be precomputed for faster signing; this is not true for k^{-1} since a new k must be chosen for each message.

c. Compare security with original

ElGamal is broken if the nonce is reused; however with this scheme it is even more broken.

Let's start with two messages signed with the same key and (incorrectly) the same nonce.

```
(x1,( \gamma1, \delta1))
(x2,(\gamma2,\delta2))
```

k is constant because it was reused, α is part of the public key so it's also constant, therefore γ is constant because $\gamma=\alpha^{k}$.

$$
\begin{aligned}
& \alpha^{\times 1} \equiv \beta^{\delta 1} \gamma^{\gamma}(\bmod p) \\
& \alpha^{\times 2} \equiv \beta^{\delta 2} \gamma^{\gamma}(\bmod p)
\end{aligned}
$$

therefore

```
\alpha\times1-\times2}\equiv\mp@subsup{\beta}{}{\delta1-\delta2}(mod p
\mp@subsup{\alpha}{}{\times1-x2}\equiv(\mp@subsup{\alpha}{}{a}\mp@subsup{)}{}{\delta1-\delta2}(\operatorname{mod}p)\quad[by definition]
x1 - x2 \equiva x (\delta1 - \delta2) (mod p - 1)
```

If $\operatorname{gcd}(\delta 1-\delta 2, p-1)=1$ then we can solve for a.

```
a = (x1 - x2) x (\delta1 - \delta2) -1 (mod p - 1)
```

Here's a quick example of this using numbers from one of the examples in the book.

```
p = 467
\alpha = 2
\beta=132
a = 127 [secret]
k = 217 [secret, accidentally constant]
Y = 2 217 mod 467 = 464 [constant because k constant]
x1 = 100 [first message]
x2 = 137 [second message]
\delta1 = (100-217 x 464) \times 455 mod 466 = 184
\delta2 = (137-217 x 464) \times 455 mod 466 = 243
```

Now solve for private key.

$$
\begin{aligned}
a & =(100-137) \times(184-243)^{-1} \bmod 466 \\
& =127 \checkmark
\end{aligned}
$$

2. (8.7) DSA

$$
\begin{aligned}
& q=101 \\
& p=7879 \\
& \alpha=170 \\
& a=75[\text { secret }] \\
& \beta=4567
\end{aligned}
$$

$$
\text { SHA3-224(x) }=52
$$

$$
k=49
$$

Let's compute the signature:

$$
\begin{aligned}
\gamma & =\left(170^{\wedge 49 \bmod 7879) \bmod 101}\right. \\
& =59 \\
\delta & =(52+75 \times 59) \times 33 \\
& =79
\end{aligned}
$$

Now let's verify the signature:

```
e1 = 52 * 78 mod 101
    = 16
e2 = 59 * 78 mod 101
    = 57
59=(170^16 * 4567^57 mod 7879) mod 101
    = 59 \checkmark
```


3. (8.10) DSA \& ECDSA Forgeries

Suppose x 0 is a bitstring such that SHA3-224(x0) is 0 .

a. DSA Forgery

```
\delta = \gamma [hint]
\gamma = ( ak mod p) mod q
\delta= a\gamma x k-1 mod q [because SHA(x) = 0]
```

Observe that if k is chosen such that it is coprime with p and q then $\gamma=0$ and thus $\delta=k^{-1} \cdot \checkmark$

```
b. ECDSA Forgery
k x A = (u,v)
r=u mod q
    s = k -1 }\timesm\timesr\operatorname{mod}q[\mathrm{ [because SHA(x) = 0]
```

Observe that if $r=0$ then $s=0 \cdot \checkmark$
4. (8.14) ECDSA

Let $E: y^{2} \equiv x^{3}+x+26 \bmod 127$, and note that $\# E=131$ which is prime. Suppose ECDSA is implemented with $A=(2,6)$ and $m=54$.
a.

We'll reuse some Maxima functions from a previous assignment to compute $B=m A$.

```
/* Perform point addition on a curve with points P, Q, coefficient A, and modulus N.
*/
pt_add(p, q, a, n) := block([x1,y1,x2,y2, x3,y3, slope],
    if q = inf then return (p),
    if p = inf then return (q),
    x1: p[1],
    y1: p[2],
    x2: q[1],
    y2: q[2],
    if x1 # x2 then (
        /* Case 1 */
        slope: mod(mod(y2 - y1, n) * inv_mod(x2 - x1, n), n),
        x3: mod(mod(slope^2 - x1, n) - x2, n),
        y3: mod(mod(slope * mod(x1 - x3, n), n) - y1, n),
            [x3, y3]
        ) else if y1 = -y2 then
            /* Case 2 */
            inf
        else (
            /* Case 3 */
            slope: mod((3*x1^2 + a) * inv_mod(2 * y1, n), n),
            x3: mod(slope^2 - 2*x1, n),
            y3: mod(slope * (x1 - x3) - y1, n),
            [x3, y3]
        )
)$
/* Compute Ith multiple of P for coefficient A and modulus N. */
pt_exp(p, i, a, n) := block([q],
    /* Start with Q = P, then compute Q' = P + Q and so on... */
    q: p,
    for j: 1 step 1 unless j >= i do (
        q: pt_add(p, q, a, n)
    ),
    q
)$
```

pt_exp([2,6], 54, 1, 127);
b.

Next we'll compute the signature, where $\operatorname{SHA}(x)=10$ and $k=75$.

$$
\begin{aligned}
{[u, v] } & =75[2,6] \\
& =[88,55] \\
r & =88 \bmod 131 \\
& =88 \\
s & =7 \times(10+54 \times 88) \bmod 131 \\
& =60
\end{aligned}
$$

C.

Finally we'll verify the signature from the previous step.

```
w = 107
\(i=107 \times 10 \bmod 131\)
    = 22
\(j=107 \times 88 \bmod 131\)
    \(=115\)
\([u, v]=22[2,6]+115[24,44]\)
    \(=[91,18]+[18,62]\)
    \(=[88,55]\)
\(u \bmod q=r\)
\(88 \bmod 131=88 \checkmark\)
```

