
RIT Computer Science • Capstone Report • 2235

Improving Histogram-Based
Mathematical Formula Search with

Local Matching and Learned Embeddings
Quinn Tucker

Department of Computer Science
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14586

qt2393@rit.edu

Abstract—The Pyramidal Histogram of Characters (PHOC) is
a spatial vector representation that has recently been applied
to the task of mathematical formula search. It is attractive for
being computationally lightweight, but unfortunately struggles
more than other formula ranking methods in cases involving (a)
a small query match embedded within a larger formula or (b)
a mismatch in variable names or notation between otherwise
equivalent formulas.

In this work we aim to address these two limitations via
two independent modifications: matching local windows and
replacing sparse binary vectors with learned dense embeddings.
We evaluate these on the ARQMath-3 formula search benchmark
and find that local matching does indeed improve retrieval
effectiveness, but our integration of dense embeddings did not.

Index Terms—Formula retrieval; Spatial embeddings

I. INTRODUCTION

A. Mathematical formula search
The ability to search collections of information with math-

ematical notation has diverse applications spanning education
and research, and the construction of software systems to
address this need has been a topic of investigation for multiple
decades [2]. One specific task falling under this umbrella is
formula search, in which a user issues a query consisting of
mathematical notation and the system must retrieve relevant
formulas from some collection.

The Answer Retrieval for Questions on Math lab, most
recently part of CLEF 2022 (ARQMath-3 [3]), includes a
formula search task with an associated formula collection
(derived from Math Stack Exchange) and datasets of relevance
judgements assessed by human annotators. In this work we
extend an existing system submitted to ARQMath ([1]) with
the aim of improving its effectiveness on this mathematical
information retrieval benchmark.

B. Pyramidal Histogram of Characters (PHOC)
The Pyramidal Histogram of Characters (PHOC) is a vector

representation of sequentially or spatially distributed letters
or symbols that was originally proposed for word spotting in
images [4]. Avenoso et al. [1] describe an extension to two

dimensions, which they dub XY-PHOC, and apply it to the
formula search task.

First let us precisely define some terminology. A symbol
refers to a particular instance of a glyph within a formula.
Every symbol has a bounding box and a label, which specifies
what “kind” of symbol it is (e.g. x or +). The formula’s
overall bounding box is divided into various spatial regions;
in XY-PHOC these are vertical and horizontal subdivisions
with varying resolution, and other work has explored different
region shapes (we refer the reader to [5] for more details and
an explanation of the xyn notation for region configurations).

For a given configuration of regions, a PHOC vector (or
simply a PHOC) refers to a binary vector indexed by (symbol
label, PHOC region) pairs, with a dimensionality of

(# of symbol labels)× (# of PHOC regions). (1)

If ℓ is a symbol label and r is a PHOC region within the
window, the component for the pair (ℓ, r) is defined as

vℓ,r =

1
if there is a symbol with label ℓ
whose bounding box intersects r

0 otherwise.
(2)

In practice, the set of labels ℓ with non-zero components in
v is sparse, so v can be stored as a short list of labels, each
accompanied with a fixed-length bit string representing which
regions contain a symbol with that label. For example, if there
are 6 PHOC regions, a PHOC might be stored like this:

v ≡ [(x,

6 regions = 6 bits︷ ︸︸ ︷
100101)

(2 , 001000)
(+, 110100)]

(3)

For the formula search task, candidate formulas are ranked
by the cosine similarity between the candidate PHOC vector
and the query PHOC vector (see Figure 1a), and the top k
results are returned to the user [1].

Rochester Institute of Technology 1 | P a g e

RIT Computer Science • Capstone Report • 2235

1

1 + e−z
Query:

∫
1

1 + e−x
dx =

∫
1

u
du = lnu = ln(1 + ex).Candidate:

[0, 1, 1, 0, 0, . . . , 1]

[1, 1, 0, 0, 1, . . . , 0]

similaritySparse PHOCs or
dense embeddings

(a) Global matching.

1

1 + e−z

∫
1

1 + e−x
dx =

∫
1

u
du = lnu = ln(1 + ex).

sum maximum similarities of all query windows

Local window
centered on

each symbol

most similar candidate window

(b) Greedy local matching.

Fig. 1. Illustration of (a) global matching, which has been used in prior work on PHOCs [1], versus (b) our proposed greedy local matching.

C. This work
While prior work has demonstrated that formula-level

(global) PHOC vectors are a useful and lightweight representa-
tion for measuring formula similarity [1] [5] [6], they struggle
in certain situations.

One pain point is a small query match embedded within
a larger candidate formula. Since the query and candidate
differ in their global structure, their formula-level PHOC
representations are likely to be dissimilar. To address this, we
propose to compute PHOC vectors for local windows in both
the query and candidate. Then, drawing inspiration from the
ColBERT [7] passage ranking model, we can align these local
representations to produce a final score for ranking.

Previous systems also underperform when a query and
candidate use different notation or variable names to express
similar mathematical concepts – effectively a vocabulary mis-
match in the domain of symbol labels. For this we propose
to learn dense embeddings for PHOC region representations,
with the aim to capture gradations of cosine similarity between
non-identical symbol labels.

Our two research questions are therefore:
RQ1. Does the use of local (as opposed to global) PHOC

matching improve retrieval effectiveness?
RQ2. Does learning dense embeddings for PHOC region

representations improve retrieval effectiveness?

II. METHODOLOGY
We now detail our two modifications to PHOC-based for-

mula search: local matching (Section II-A) and learned dense
embeddings (Section II-B). We then describe the experimental
setup we use to assess their effectiveness (Section II-C).

A. Greedy local matching
In the global matching paradigm from prior PHOC systems

(such as [1] and [5]), each formula (query or candidate) is
represented by a single PHOC vector computed from the
contents of the formula’s entire bounding box [1] (Figure 1a).

We instead propose to represent a formula as a set of
PHOC vectors computed from local windows. As a simple
way to distribute windows across the formula, we compute
one PHOC vector for each symbol using the contents of a
square window centered on that symbol. (For example, the

formula x + x2 would have four local PHOCs corresponding
to the four symbols.) The computation of each local PHOC
differs only in the translation of the window; in particular, the
central symbol receives no special treatment. The width of the
window is a hyperparameter that we set relative to the x-height
of the surrounding font.

Given their sets of local PHOC vectors, we use a method
analogous to the MaxSim token alignment mechanism from
ColBERT [7] to compute the similarity between a query and
a candidate formula (Figure 1b). First, we match each local
window in the query to the most similar local window in the
candidate. Then we sum these “maximum similarity” values
to get the overall query-candidate similarity score

score(Q,C) =
∑

v(q)i ∈Q

max
v(c)j ∈C

cos(v(q)i , v(c)j) (4)

where Q and C are the sets of local PHOC vectors from the
query and candidate (respectively) and cos(·, ·) denotes the
cosine similarity between two vectors.

Candidates are then ranked in descending order by score.

B. Learning dense embeddings
The PHOC representation for the contents of a (global or

local) window is effectively a concatenation of bag-of-symbol-
labels representations from each of the individual regions
within the window.

Consider some window in some formula, such as any of
the blue windows in Figure 1. The representation vector vr
for each region r in this window can be described as a sum
of “embedding” vectors eℓ for each symbol label ℓ present in
that region:

vr =
∑
ℓ∈r

eℓ (5)

In the original sparse PHOC representation, each eℓ is simply
a |V |-dimensional 1-hot vector encoding the identity of the
symbol ℓ (where V is the vocabulary of symbol labels).
Any two non-identical symbol labels are therefore completely
orthogonal, even if they are semantically equivalent in context
(such as R versus R to denote the set of real numbers).

Replacing these high-dimensional sparse vectors with lower-
dimensional dense vectors could in theory capture a more nu-
anced measure of similarity between non-identical symbols. To

Rochester Institute of Technology 2 | P a g e

RIT Computer Science • Capstone Report • 2235

Input:
context symbols

from local window

Output:
masked symbol

n n

∫ ∫+ +

e e

1 1

((

u u

...
...

dense embedding

Fig. 2. The model architecture for learning dense bag-of-symbols embeddings.

test this hypothesis we use an unsupervised masked-prediction
task similar to word2vec [8] (and in the same vein as more
sophisticated models like BERT [9]) to learn dense embedding
vectors.

Figure 2 illustrates the prediction task and model structure.
First we select a random local window from a random formula
in the collection and get the set of symbol labels it contains.
A random label in the window is “masked out”, and the
remaining labels are passed as input to the embedding network.
The network must then compress this information into a low-
dimensional embedding in the middle which is finally used
to predict the identity of the masked label. Intuitively, this
encourages sets of symbols that appear in similar contexts to
be given similar dense embeddings.

We use a simple model architecture with binary inputs,
two linear layers without biases, and a cross-entropy loss. We
initialize the first layer to random unit vectors and the second
layer to zeros, then train using AdamW with γ = 0.001 and
λ = 0.0001 for 20,000 iterations with a batch size of 1,000.

Once the network has been trained, we use the first layer of
the network to compute dense embeddings for PHOC regions.
This is a matrix multiplication between the first layer’s weight
matrix and the binary representation of the region’s symbol
labels, which is equivalent to summing the columns of the
weight matrix that correspond to the labels present in the
region. Therefore, we can interpret this as replacing the sparse
1-hot symbol embeddings in Eq. 5 (eℓ) with dense symbol
embeddings extracted from the trained network parameters.

It is worth noting that our setup has a couple differences
between training and inference. The first is that labels are only
masked from the input during training; at query time, the input
to the network is the entire set of labels for a region. The
second is that during training, the input contexts are entire
local windows, while at query time the input “contexts” are
PHOC regions, which are subsets of the current local or global
window.

C. Experimental design
To measure the impact of our two proposed modifications,

both when combined and when applied independently, we
compare the effectiveness of four candidate scoring methods:

• Global+Sparse (the baseline without our modifications)
• Global+Dense
• Local+Sparse
• Local+Dense

For each scoring method we independently tune the PHOC
region configuration and window size hyperparameters using
a grid search over the following ranges:

• region configuration ∈ {x5, y5, r5, xy5, xr5, yr5}
• window size ∈ {2ex, 3ex, 4ex, . . . , 12ex}

where the “ex” unit denotes multiples of the surrounding font’s
x-height. All scoring methods except Global+Sparse are af-
fected by the window size; the embeddings for Global+Dense
were trained using local window contexts. For each scor-
ing method we select the hyperparameter configuration that
achieves the best nDCG′@1000 on a set of queries from
ARQMath-1 and 2 for use in our main evaluation.

Our main experiment then evaluates the four scoring meth-
ods on 76 queries from Task 2 of ARQMath-3. We use a
collection of 31,206 formulas, consisting of formulas for which
there are relevance judgements from any of the ARQMath
competitions. We compute nDCG′, mAP′, and P′@10, @5,
and @1 by exhaustively scoring all formulas in the collection,
ranking them by score (without any retrieval stage or cutoff),
and ignoring results that do not have a relevance judgement
for the current query.

In all Dense experiments we use a fixed embedding dimen-
sionality of 32 and retrain the embeddings for every window
size. We train the embeddings on the same collection of
31,206 formulas used for evaluation; this would be a realistic
practice for a deployed system, since the unsupervised training
procedure does not use relevance labels and only requires the
formulas themselves.

III. RESULTS AND DISCUSSION
A. Hyperparameter tuning

Table I shows the best hyperparameters identified for each
of the four scoring methods as a result of the grid search on
queries from ARQMath-1 and 2.

For all four scoring methods, PHOC region configurations
with x splits tended to perform better (in terms of nDCG′ on
the tuning set) than those without. xy5 in particular performed
well across the board, especially for the two Global scoring
methods.

For scoring methods that use local windows, window sizes
greater than 7ex generally performed the best. Very small
window sizes (2-3ex) harmed effectiveness.

B. Evaluation on ARQMath-3
Table II shows the results of our evaluation on ARQMath-3

for each of the four scoring methods considered.
Both systems using local matching performed significantly

better in nDCG′, mAP′, and P′@10 compared to the baseline,
and did not perform worse in P′@5 and P′@1 (p < 0.05).
This validates our initial hypothesis that fine-grained, local
alignment results in a better similarity metric for the formula
search task.

Dense embeddings, however, did not provide much benefit
in our experiments. The use of that modification on its own
(Global+Dense) did not produce statistically different results
from the baseline in any metric examined. When adding dense

Rochester Institute of Technology 3 | P a g e

RIT Computer Science • Capstone Report • 2235

TABLE I
Hyperparameter tuning results. For each of the four scoring methods, the parameters selected are those with the highest nDCG′ on the training set

(rightmost column).

BEST PARAMETERS EFFECTIVENESS ON ARQMATH-1 AND 2
Scoring method Regions Window size nDCG′@1000

Global + Sparse xy5 — 0.6892
Global + Dense xy5 9ex 0.6818
Local + Sparse xr5 11ex 0.7505
Local + Dense x5 9ex 0.7660

TABLE II
Results from our main experiment evaluating the impact of our two scoring modifications. Significant differences from Global+Sparse are indicated with an

asterisk (p < 0.05; two-sided t-tests with Bonferroni correction).

PARAMETERS EFFECTIVENESS ON ARQMATH-3
Scoring method Regions Window size nDCG′ mAP′ P′@10 P′@5 P′@1

Global + Sparse xy5 — 0.8014 0.5233 0.5632 0.6211 0.8026

Global + Dense xy5 9ex 0.8051 0.5322 0.5592 0.6474 0.7895
Local + Sparse xr5 11ex 0.8302∗ 0.5806∗ 0.6605∗ 0.7263∗ 0.8684
Local + Dense x5 9ex 0.8302∗ 0.5834∗ 0.6487∗ 0.7053 0.8289

embeddings on top of local matching (Local+Dense, relative to
Local+Sparse), nDCG′ and mAP′ were minimally affected and
small decreases were observed in P′@10, P′@5, and P′@1.

We interpret this result with the following hypothesis. For
some queries, the use of dense embeddings does indeed
surface relevant results that sparse scoring would miss due
to differences in notation or variable names. But for other
queries, it also surfaces irrelevant results involving symbols
that happen to be nearby in the embedding space. In other
words, the structure of our embedding space is not entirely
aligned with what is important for relevance.

Since our evaluations use exhaustive comparison on a re-
duced collection without a retrieval stage, these results are
not directly comparable to previously reported results for
ARQMath-3. Despite that, our results do provide an informal
upper bound on the effectiveness of the algorithms under
consideration, and the relative improvements we observe with
local matching suggest that it is a promising direction for
future study.

IV. CONCLUSION

Our results suggest that greedy alignment over local win-
dows improves the effectiveness of PHOC representations for
the task of mathematical formula search. We hypothesize
that this is because local alignment prevents scoring from
penalizing relevant candidates that nonetheless contain non-
matching content or have a different spatial layout than the
query. Local matching also instills a degree of invariance to
global translation, which relates to invariance priors in other
models such as convolutional neural networks. Ultimately,
local matching exploits the modular and compositional nature
of mathematical notation to create a better relevance heuristic.

In contrast, our use of dense embeddings did not benefit
retrieval effectiveness. This is somewhat surprising given that
dense vector representations have seen great success in many

tasks, including representations trained with unsupervised
context-prediction objectives [9]. We therefore offer a few
hypothetical explanations for our experimental results:

• The discrepancy between the network’s input distribution
during training (entire local window contexts) versus at
query time (sub-region contexts) may harm performance.

• Although we did not observe improvements when increas-
ing the embedding dimension during informal experimen-
tation, it is possible that our choice of 32 dimensions is
too small and lacks representational capacity.

• The unsupervised context modeling objective may simply
be a suboptimal proxy for the formula relevance task; fine-
tuning the embeddings on relevance judgements with a
suitable learning-to-rank loss may improve effectiveness.

Testing these hypotheses is left to future work.
Despite the current popularity of deep neural networks in

information retrieval, the PHOC representation is attractive for
its conceptual simplicity, light computational footprint, and
lack of reliance on large training datasets. Our work shows that
a straightforward modification — aligning PHOCs computed
from local windows — can improve effectiveness. We leave it
to future work to evaluate this approach on larger benchmarks,
to explore alternative methods for contextualizing symbols,
and to extend these ideas for efficient comparison of spatial
structures in other domains.

ACKNOWLEDGMENT

The author would like to thank Dr. Richard Zanibbi for
his guidance throughout this project; Bryan Amador for his
assistance with the existing PHOC codebase and ARQMath
datasets; and the Document and Pattern Recognition Lab at
RIT for providing essential computational resources.

Rochester Institute of Technology 4 | P a g e

RIT Computer Science • Capstone Report • 2235

REFERENCES
[1] R. Avenoso, B. Mansouri, and R. Zanibbi, “XY-PHOC symbol location

embeddings for math formula retrieval and autocompletion,” 2021.
[Online]. Available: https://ceur-ws.org/Vol-2936/paper-02.pdf

[2] Richard Zanibbi and Dorothea Blostein, “Recognition and retrieval of
mathematical expressions,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 15, no. 4, pp. 331–357, Dec. 2012.
[Online]. Available: http://link.springer.com/10.1007/s10032-011-0174-4

[3] B. Mansouri, V. Novotný, A. Agarwal, D. W. Oard, and R. Zanibbi,
“Overview of ARQMath-3 (2022): Third CLEF lab on answer
retrieval for questions on math,” in Experimental IR Meets
Multilinguality, Multimodality, and Interaction. Cham: Springer
International Publishing, 2022, vol. 13390, pp. 286–310. [Online].
Available: https://link.springer.com/10.1007/978-3-031-13643-6_20

[4] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and
recognition with embedded attributes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2552–2566, 2014.

[5] M. Langsenkamp, B. Mansouri, and R. Zanibbi, “Expanding spatial
regions and incorporating IDF for PHOC-based math formula retrieval
at ARQMath-3,” 2022.

[6] M. Langsenkamp, “SpatialEntity2Vec: Creating dense vector representa-
tions for entities within a 2D space.”

[7] O. Khattab and M. Zaharia, “ColBERT: Efficient and effective passage
search via contextualized late interaction over BERT,” in Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 39–48. [Online].
Available: https://doi.org/10.1145/3397271.3401075

[8] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, ser. NeurIPS’13, 2013, pp. 3111–3119.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

Rochester Institute of Technology 5 | P a g e

