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Abstract—This paper introduces an automated system de-
signed to enhance content moderation on online video platforms
by effectively removing sensitive text. Leveraging the FAST
text detection model, PARSeq text recognition model, and Aho-
Corasick and Levinstein Distance string matching techniques, the
system successfully identifies and flags inappropriate or sensitive
texts. This ensemble system achieves 80.27% accuracy on text
detection, 82.65% accuracy in text recognition, and 78.32%
accuracy in text spotting tasks, on ICDAR ’19 ArT dataset.
Moreover, results of an informal usability study shows that
the system achieves an average user rating of 4.30 in blurring
performance and 4.55 in detection performance.

Index Terms—Text Removal; Video Censoring; Text Recogni-
tion

I. INTRODUCTION

Selective text removal in videos addresses the challenging
task of content moderation, particularly within the context of
the vast landscape of user-generated video content. The diverse
nature of video uploads on online platforms emphasize the
importance of safeguarding against unintended exposure of
sensitive text, including profanity, personal names, addresses,
and other private information. At its core, this initiative is
driven by the fundamental need to enhance user experience
and uphold community standards.

The automatic and precise removal of sensitive text from
each frame before videos go online not only aligns with pri-
vacy norms but also streamlines content moderation processes
for platforms. The ensuing sections delve into the intricacies
of the implemented technologies, shedding light on how they
collaboratively work to achieve the removal of sensitive texts
in videos.

II. RELATED WORK

In video censoring task the main goal is to censor malicious
content, particularly profane words, scenes or audio. A recent
work [1] introduces an innovative approach to automate video
moderation, which involves silencing the audio and pixelating,
or blurring, the lips in video segments containing profanity.
However, this approach does not censor any text appearing
on the screen. Extensive research has also been made in text
censoring. A recent method [2] introduces a decision system
that employs unsupervised learning, leveraging skip-gram and
cosine similarity, to detect obfuscated abusive language. The
system incorporates various efficient mechanisms, including
blacklists, n-grams, edit-distance metrics, mixed languages

(words from two different languages in the same sentence),
abbreviations, punctuation, and special characters, to iden-
tify the intentional obfuscation of abusive words. Notably,
the integrated decision system demonstrates a high accuracy
for malicious word detection in news article comments, and
similar strong performance for online community comments
and Twitter tweets. However, this system is designed to work
on text documents such as newspaper articles, tweets, social
media comments, etc. This means that their system works on
pre-extracted sentences and paragraphs. Extracting sentences
from each frame of the video is not in the scope of this project
and thus, a system for word-level filtering is needed. Another
work [3] developed a machine learning-based approach to
detect hate speech in user comments from various domains.
They also create a unique corpus of annotated user comments
for abusive language. This system also needs pre-extracted
sentences for its processing, and thus, for the above-mentioned
reasons is not suitable.

Scene text removal involves removing text regions from
scenes while preserving the background of the text. One recent
work introduces FETNet [4], that performs this by erasing text
features and using an attention module to generate feature
similarity guidance. Further, it uses a Feature Transferring
Module to transfer features to different layers based on at-
tention guidance. This resulting end-to-end network performs
impressively against other state-of-the-art methods in SCUT-
Synth [5] and SCUT-EnsText [6] datasets, especially show-
casing its excellent ability to reconstruct background. Another
work introduces MTRNet++ [7], a novel one-stage mask-based
text inpainting network. Its architecture uses feature mask
refinement, coarse inpainting, fine inpainting branches, and
attention blocks, which enables it to remove text with and
without external masks. This multi-branch architecture is also
easily trainable in an end-to-end manner. MTRNet++ achieves
superior performance on the SCUT-Synth [5] and SCUT [8]
datasets, compared to state-of-the-art methods, without relying
on external ground-truth masks. However, these models, on
their own, cannot identify what the textual transcription is.
This would result in an approach to remove all text in the
scene. Thus, these models are not suited for selective text
removal, where the task is to remove profanity or sensitive
text, while preserving other text in the scene. Therefore, using
text detection and recognition models along with a blur filter
is more suitable.
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Scene text detection is the task of detecting/segmenting
regions where text appears on the scene. The field of scene
text detection has seen significant advancements in recent
years, with various methods aiming to enhance accuracy and
efficiency. EAST [9], offers a pipeline that directly predicts
words or text lines with arbitrary orientations and quadrilat-
eral shapes from full images using a single neural network,
eliminating the need for intermediary processing steps such
as candidate aggregation and word partitioning. Experimen-
tal results on ICDAR ’15 [10], COCO-Text [11], show a
good accuracy, although with a speed trade-off. Choosing
a text detection model with good accuracy is needed when
processing videos. Another work, SRFormer [12] introduces
a Mask-informed Query Enhancement module, which uses
segmentation results for soft region-of-interest extraction to
enhance instance queries. Empirical analysis showcases the
performance of SRFormer across benchmarks such as [13]
achieving high accuracy.

Scene text recognition involves identifying and transcribing
the text present in natural images or scenes. There are many
methods proposed to tackle this task. One such method intro-
duces Aster [14], an end-to-end neural network model with
two key components, a rectificaton network and a recognition
network. The rectification network adaptively transforms input
images to rectify text within them. The recognition network
in ASTER is a sequence-to-sequence model with attention
mechanisms. It directly predicts a character sequence from
the rectified image. Evaluation on text recognition datasets
show that Aster performs well in IIIT 5k-work [15] and
ICDAR 2013 [16] datasets, but struggles with accuracy on
ICDAR 2015 [10] dataset. Another work introduces Multi-
modal Text Recognition Network (MATRN) [17], a novel
approach that improves recognition performance by using
interactions between visual (pixel-level information of the text)
and semantic (context-rich information associated with the text
captured using language models) features. It encourages the
fusion of semantic features into visual features during training
by masking visual clues associated with characters. MATRN
shows excellent results in IIIT 5k-word [15], ICDAR 2013
[16], and ICDAR 2015 [10] datasets.

Both, text removal and text recognition models need text
detectors/segmenters to find where text regions appear in a
given image or scene. Selective text removal requires iden-
tifying or transcribing what text appears in the segmented
text regions, and then removing or blurring the text that
matches the sensitive word vocabulary. While a pipeline of
text detector, text recognizer and text removal models could
be used, it is very heavy on processing to run all three models
together. Moreover, a simple blur filter can serve the purpose
of censoring the sensitive text and achieve the goal of content
moderation. Therefore, a combination of text detector and text
recognition models is sufficient for this task.

III. METHODOLOGY

Figure 1 shows the system design. The frames from the
video are extracted by OpenCV [18] and each frame is

Fig. 1. Figure showing the system design

processed individually. To identify where textual profanity
occurs in a video, the system needs to detect exactly what
words appear in each frame, and then selectively remove any
words that have a match in the sensitive word vocabulary. A
scene text detection model, FAST [19], performs the required
text segmentation, and was chosen due to its inference speed
and accuracy. A text recognition model, PARSeq [20], is
used to recognize text, chosen for its robustness and high
accuracy. Flagging the text for removal is done by using string
matching using algorithms such as Aho-Corasick [21] to find
matches in the sensitive word vocabulary. Moreover, spelling
and detection errors are handled by using Levenshtein Distance
[22]. Using OpenCV [18], a blur filter is used to remove the
flagged text from the scene.

A. Text Detection

The system uses FAST [19] text detection model to generate
bounding-boxes of all texts detected in the frame. It uses
a minimalist kernel representation (MKR), where unneces-
sary features and functionalities are removed and only the
fundamental components used for basic system operation are
kept, resulting in reduced size and complexity of the kernel.
Moreover, a GPU-parallel post-processing step called text
dilation, is used, in which complete text lines are rebuilt from
predicted text kernels, to efficiently assemble text lines with
reduced time overhead. FAST achieves a notable trade-off
between detection performance and inference speed, achieving
comparable detection accuracy to SRFormer [12] while also
being faster than EAST [9]. In this system, the FAST-640
configuration is used which is trained on the TotalText dataset
[13]. The frame is first processed by image transforms and
then sent to the FAST model for inference and text detection.
The configuration of the model uses a filter to only return
detections that have a confidence score higher than 70% . The
model returns a list containing bounding-box coordinates of
all detected texts in the frame. this list is passed on to the text
recognition module.

B. Text Recognition

The text recognition module uses PARSeq [20] text recogni-
tion model, which employs Permutation Language Modelling
to train autoregressive language models with shared weights.
Autoregressive models are designed to predict the next element
in a sequence given the previous elements. Sharing weights
means using the same set of parameters (weights and biases)
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for multiple parts of the network. This approach unifies
context-free, where each token is generated independently of
the others, and context-aware decoding, where previously gen-
erated tokens are considered when predicting the next token
in the sequence. This contributes to robustness, particularly
in handling vertical and rotated text commonly found in real-
world images. PARSeq delivers high accuracy on benchmarks
such as COCO-Text [11] and delivers comparable performance
to MATRN [17]. Moreover, PARSeq performs particularly
well in situations where the parts of the text in the images
is obscured. Its ability to predict what the obscured letters be,
is the reason it was chosen for this system. Videos can often
contain text overlaps or partially visible text as seen in video
game interfaces or user-added effects. In this system, the ’tiny’
configuration of PARSeq was used, which is trained on the
[23] dataset. The list of bounding-boxes are used to crop out
the text regions from the frame. Next, all the bounding-box
and text region pairs are then put in a batch and send to the
model. The model performs the inference and transcribes the
text in the text regions. It returns a dictionary containing the
transcribed texts and a list of corresponding confidence scores
and bounding-boxes.

C. String Matching

The list of transcribed words along with the corresponding
bounding-boxes are sent to the string matching module. The
detections and transcriptions are not always accurate. There
may be cases where the detection contains multiple words
and as such the transcription will be a concatenation of these
words. In such cases, finding a word-to-word match in the
sensitive word vocabulary will not work.

1) Aho-Corasick: In order to address this issue, the Aho-
Corasick [21] python library is used to find substrings of the
transcriptions that have a match in the vocabulary. The vocab-
ulary is a set of words that the Aho-Corasick algorithm uses
to make an Aho-Corasick automaton. This automaton uses a
trie (a tree-like data structure) augmented with additional links
to efficiently handle multiple pattern searches. Each node in
the trie represents a character in one or more patterns. The
root of the trie represents an empty string. For each pattern
in the set, it traverses the trie, adding nodes and edges as
needed. In addition to regular transitions (edges) between
nodes representing characters, the Aho-Corasick algorithm
introduces “failure links”. If a match fails at a certain state, the
failure link guides the automaton to the longest proper suffix
of the current pattern that matches a prefix of another pattern.
By following these links, it can quickly skip ahead in the text
when there is a mismatch. To start matching the text against
the trie, it follows the edges corresponding to the characters
in the text. If a mismatch occurs, it follows the failure link to
skip ahead in the text and continue matching from there. If it
reaches a node corresponding to the end of a pattern, it is a
match.

Using Aho-Corasick automaton to hold the vocabulary,
substrings of each transcription are checked against the

patterns appearing in the automaton. The substrings are
generated iteratively and checked against the automaton for
a match. However, if the automaton returns a “fail state”
flag, the current substring is completely dropped and new
substrings are generated from the character after the end of
the current substring. For example, if the transcription is
”classroom”, and the substring “class” returns a “fail state”
flag, then the next substrings will be generated from “r”, such
as “ro”, “roo”, etc. This method helps avoid unnecessary
processing for redundant non-matches. Moreover, as soon as
a single match is found, the transcription that was currently
being tested is flagged for removal. The system does not
check if there are multiple matches found in the different
substrings of the transcription, as the goal is to flag the entire
transcription regardless. Fig. 2 shows an example of how
Aho-Corasick is used in the system. In the example, the
vocabulary contains the word “classroom”. However, the text
detected is “THECLASSROOM”. Leveraging Aho-Corasick
the system finds substrings of the detected text that match the
vocabulary. The system is able to find a match with substring
“CLASSROOM” in the vocabulary and thus, the detected
word “THECLASSROOM” is flagged for removal.

2) Levenshtein Distance: In some cases the text appearing
in the frame or the transcription generated may have spelling
errors. In such a case, Aho-Corasick will not be able to find a
substring that has a match in the vocabulary, as the misspelled
word will not appear in the pattern. Therefore, to address this
case, the Levenshtein Distance [22] between the transcription
and the vocabulary is calculated. Levenshtein Distance, also
known as the edit distance, is a metric used to measure the
similarity between two strings by counting the minimum
number of single-character edits required to transform one
string into the other. These single-character edits can be
insertions, deletions, or substitutions. If Aho-Corasick found
no matches, then, the system calculates the Levenshtein
distance between the transcriptions and the vocabulary. If the
vocabulary contains a word that is 1 edit distance away from
the transcription, then the transcription is flagged for removal.
Fig. 3 shows an example of how Levenshtein Distance is
used in the system. In this example, the vocabulary contains
the word “coinswatch”. However, the text in the frame
is “coinswitch”. Since the Levenshtein Distance between
“coinswitch” and “coinswatch” is 1, the word “coinswitch” is
flagged for removal.

Table I shows the various cases of string matching that
the system encounters. In the “Direct Match” scenario, the
detected text exactly matches a word in the vocabulary. For
instance, the detected text “panda” corresponds directly to
the vocabulary entry “panda”. The “Sub-string Match” case
involves the detected text containing a sub-string that directly
matches a word in the vocabulary. An example is the detection
of “scrapbook”, where the sub-string “crap” aligns with a
vocabulary entry. The “ED-1 Match” situation occurs when
the detected text can be modified by substituting, adding, or
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Fig. 2. Example of Aho-Corasick helping in identifying matches. Here the
vocabulary contains the word “classroom”. However, the transcription detected
is “THECLASSROOM”. In this case, Aho-Corasick is able to match the
substring “classroom” to the vocabulary.

deleting a single character to achieve a direct match in the
vocabulary, as demonstrated by “bass” transforming into “ass”.
Lastly, the “No Match” category denotes instances where the
detected text fails to match any vocabulary entry under the
defined criteria, such as “crepe” having no corresponding
match with “crap” in the vocabulary.

D. Blurring and Ouptput

After the string matching process, the flagged bounding-
boxes are sent to the blurring module. Using OpenCV [18],
the Gaussian Blur filter is applied to each of the bounding-
box regions. The kernel size parameter is set to “(45, 45)”,
where the tuple holds the height and width of the filter
matrix that is used for the convolution for Gaussian Blur. The
standard deviation parameter is kept as “0”. This means that
the standard deviation value, “sigma”, is calculated using the
kernel size, given by equation (1), where “ksize” is the kernel
size. Once the blur filter is applied to all the flagged bounding-
box regions of the video frame, the modified video frame is
written to the output video file using OpenCV.

sigma = 0.3× ((ksize− 1)× 0.5− 1) + 0.8 (1)

IV. EVALUATION

Evaluation of the system is done in four parts. First three
parts are evaluating the performance of the detection and
recognition capabilities of the system. The fourth part of
evaluation entails conducting an informal usability study of
the system.

A. Evaluation on ICDAR ArT Dataset

The ICDAR ’19 ArT (arbitrarily shaped text) [23] dataset is
known for its diversity in text shapes, encompassing curved,
slanted, and irregularly shaped text regions. It consists of
three tasks: text detection, text recognition and text spotting
(detection + recognition). The dataset contains over 10,000
samples, with both real and synthetic images. Fig. 4 shows an
overview of the ArT dataset.

Fig. 3. Example of Levenshtein Distance helping in identifying a match. Here
the vocabulary contains the word “coinswatch”. However, the text appearing
in the frame is “coinswitch”. Levenshtein Distance between the two is 1 and
so, “coinswitch” is flagged

TABLE I
EXAMPLES OF THE DIFFERENT CASES OF STRING-MATCHING

ENCOUNTERED BY THE SYSTEM

Cases Description Example
Detection

Example
Vocabu-
lary

Direct Match The detected text has
a match in vocabulary
with identical charac-
ter sequence

“panda” “panda”

Sub-string Match The detected text
contains a sub-
string which has a
direct match in the
vocabulary

“scrapbook” “crap”

ED-1 Match (edit
distance of 1)

The detected text can
be modified by sub-
stitution, addition or
deletion of one char-
acter and the result-
ing text has a direct
match in the vocabu-
lary

“ship” “shit”

No Match (edit
distance greater
than or equal to
2)

The detected text
has none of the
above matches in the
vocabulary. No direct
or sub-string match
found and the edit
distance is greater
than or equal to 2.

“crepe” “crap”

Video streams contain a wide variety of text with varying
orientations, sizes and shapes. The ArT dataset allows
to assess the system’s capability to accurately detect and
recognize text within such scenarios. The system is evaluated
on Task 1: Text Detection, Task 2: Text Recognition and Task
3: Text Spotting.

1) Evaluating Text Detection: Task 1 of ArT dataset is used
to benchmark the text detection capabilities of the system. The
task contains images with multiple text regions in different
sizes and orientations. The input images are given to system’s
FAST [19] module to generate bounding-boxes for all detected
text regions in the images. For each input image, the generated
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Fig. 4. Overview of the ICDAR ’19 ArT dataset [23]

bounding-boxes are compared against the ground truth bound-
ing coordinates. This is done by calculating the intersection-
over-union (IOU) between the two. The task requires that the
threshold for a correct detection is an IOU of over 0.5. For
the evaluation of the model on the task, its precision, recall
and accuracy are computed. The accuracy is measured as the
harmonic mean. These metrics are given by:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(2)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(3)

Accuracy =
2*Precision*Recall
Precision + Recall

(4)

2) Evaluating Text Recognition: Task 2 of ArT dataset is
used to evaluate the text recognition capabilities of the system.
Task 2 comprises of cropped images containing a text region
with just one word of text in latin characters, in varying
orientations and shapes. The input images are given to the
system’s PARSeq [20] module for text recognition. The model
generates the transcription of the text. This transcription is then
compared to the corresponding ground truth for evaluation.
The transcription is considered correct only if it is identical
to the ground truth. Moreover, Normalized Edit Distance (1-
NED) is calculated between the transcriptions and ground
truth. This measures the similarity between the two strings.
Edit Distance (ED) is the minimum number of edit operations
(additions, removals, substitutions) required to transform one
string to another. Normalized Edit Distance (NED) is then
calculated by normalizing the Edit Distance by the length
of the reference string. This normalization accounts for the
fact that longer strings are expected to have higher raw edit
distances. An NED of 0 represents a perfect match and
an NED of 1 represents no similarity. The task requires to
calculate the value “1 - NED” which represents that a perfect

match would have a value of 1 and strings having no similarity
will be 0. The accuracy is calculated similar to equation (4).

1-NED = 1−NED = 1− Edit Distance (ED)
Length of the reference string

(5)

3) Evaluating Text Spotting: In this task the performance is
evaluated on detection and recognition of every text instance
in the provided image in an end-to-end manner [23]. However,
the system is not an end-to-end approach as it uses two dif-
ferent models sequentially. Due to this, it cannot be compared
against the state-of-the-art methods in this task. Just like the
task 2, the input images are sent to FAST for segmentation
and generating the bounding-boxes for all the text detected in
the image. These bounding-boxes are sent to PARSeq where
the input image is cropped based on the bounding-boxes and
transcriptions are generated for text in each bounding-box. The
performance of the system is evaluated by comparing the IOU
(intersection-over-union) between the bounding-boxes of the
output and the ground truth. The task specifies that if the
IOU between the output and one of the ground truth boxes
for the image is over 0.5 then the corresponding transcription
is compared against the ground truth for the evaluation. In
the case of multiple matches of the output and the ground
truth, only the ground truth bounding-box with the highest
IOU is considered, and the rest are taken as false positives.
The accuracy is calculated similar to equation (4).

B. Informal Usability Test

The primary goal of this usability study is to evaluate
the effectiveness of detecting and blurring specified words in
videos. The insights gathered from this study help identify
areas for improvement and inform further developments to en-
hance the overall user experience. In this study 5 videos, each
about 10 seconds long, were processed by the system. There
were two videos from news category, two videos from video
game captures, and one video clip from a live-stream which
contained on-screen captions and viewer chat. The system was
given each video along with corresponding vocabulary words
for the video. The system generated two output videos for
each input video. One video contains detection visualizations
of the flagged words in the video, as seen in 5. In the other
video, these flagged words are blurred out, as seen in 6.

There were four evaluators, all of whom were students of
Golisano College of Computing and Information Sciences.
I was not an evaluator. The evaluators were asked to fill a
questionnaire for each video. The questions asked were:

• Were there any instances where the system incorrectly
blurred text that did not match the pre-defined list of
words? (Evaluators were also asked to list the words if
they answered ’yes’)

• Were there any instances where the system missed blur-
ring text that should have been detected? (Evaluators were
also asked to list the words if they answered ’yes’)
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Fig. 5. This figure shows a frame from a visualization video used for the
informal usability study.

Fig. 6. The figure shows a frame from a blur video used for the informal
usability study.

• Overall, did the system perform well in blurring specified
words in the video? (Scale of 1-5, where 1 is poor and 5
is excellent)

• In your opinion, how accurate was the system in detecting
specified words? (Scale of 1-5, where 1 is not accurate
and 5 is highly accurate)

The evaluators were also asked to provide any additional
comments they may have for each video.

V. RESULTS

This section discusses the results obtained from the evalu-
ations on ArT dataset on text detection, text recognition and
text spotting. The system is compared against results of end-
to-end systems for the respective tasks. Moreover, the results
of the informal usability study are analyzed along with the
qualitative analysis discussion of various cases showing the
strengths and weaknesses of the system.

A. Text Detection

Table II shows the results of text detection evaluation. The
system achieved an accuracy of 80.27%, precision of 83.42%,
and recall of 77.36%. For comparison, the performance of
state-of-the-art systems on this dataset are also provided.
the AntFin-Cascade Mask R-CNN [24] method demonstrated
higher performance with an accuracy of 85.18%, precision
of 87.08%, and recall of 83.36%. Whereas, the I3CL [25]
method also showed competitive results, achieving an accuracy
of 84.03%, precision of 87.26%, and recall of 81.03%.

B. Text Recognition

In Table III the results of text recognition are presented,
highlighting the accuracy and the Average 1-NED (Normalized
Edit Distance). The system achieved an accuracy of 82.65% in
recognizing texts. For the recognition quality using the Aver-
age 1-NED metric the system performs at 93.96%. To contex-
tualize the system’s performance, it was compared to two state-
of-the-art methods in text recognition. The CLIP4STR [26]
approach achieved an accuracy of 85.9% and the MGP-STR
[27] method achieved an accuracy of 84.9%. Unfortunately,
data for the Average 1-NED was not available for comparison.

C. Text Spotting

In Table IV the results of the text spotting (detection +
recognition) task are presented, highlighting the accuracy,
precision, and recall of the system. The text spotting system
achieved an accuracy of 78.32%, a precision of 82.8% and
recall of 74.2%. This task requires evaluation on end-to-end
models and the system does not fit this criteria. However, to
provide context, evaluation performance of Tencent TEG OCR
[28] and Sogou OCR [29], on the task are provided. Tencent
TEG OCR achieved an accuracy of 68.40%, while Sogou OCR
achieved an accuracy of 61.78%.

D. Results of Informal Usability Study

This section discuses the results of the informal usability
study. The ratings given by the evaluators for blurring and
detections were collected. The average rating was calculated
for each video for both categories. The average of all ratings
given, for blurring, was 4.30 with a standard deviation of 0.71.
Figure 7 shows the average ratings for each video for blurring.
The evaluators rated the system highest for “News 1” video,
giving an average rating of 4.75 out of 5. Whereas, the lowest
average rating was given to “Game 2”, which was 3.75 out
of 5. The average of all ratings given, for detection, was 4.55
with a standard deviation of 0.73. Figure 8 shows the average
ratings for detections. The evaluators rated the system highest
for “News 1” and “Captioned” videos, giving an average rating
of 5 out of 5. Whereas, “Game 2” shows the lowest rating
once again, getting an average rating of 3.75 out of 5. The
evaluators expressed that the system struggled with “Game 2”
video, missing detections and blurring on several instances.

E. Qualitative Analysis

In this section, various cases handled by the system are
discussed. The system shows robustness in detecting and
transcribing text that have some obscurity in its characters or
orientation. Figure 9 shows a cropped video frame where the
word “VETERANS” appears and the first few characters are
appear slightly obscured due to its orientation. The system is
able to accurately detect and transcribe this word. This is a
strength of the PARSeq [20] model used in the system. Figure
10 shows that the system has trouble detecting numbers that
are next to graphical items or symbols. Moreover, is is unable
to detect “DHL” either. This limitation of the FAST [19] text
detection model could be due to the datasets it was trained on.
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Fig. 7. This figure shows the average ratings for each video in blurring
performance, in the informal usability study.

Fig. 8. This figure shows the average ratings for each video in detection
performance, in the informal usability study.

The system needs to be able to blur text to the point that it
is illegible. It is able to do so for most texts that have a scale
much smaller than the video, as seen in Figure 11. However,
the system struggled with text that is large and bold. It was
unable to make the text illegible by blurring, as seen in figure
12. This was due to the constant kernel size parameter in the
Gaussian Blur function. This was fixed after the study, by
implementing a “dynamic blur” approach, where the kernel
size of the Gaussian Blur function was adjusted based on the
height of the bounding-box. Larger kernel size provides more
distortion which helps blurring large and bold text. The kernel
size in dynamic blur is calculated by taking the value of the
bounding-box height and scaling it by a factor of “1.5”. This
value is then used for both, the height and the width of the
kernel. Figure 13 shows the result of dynamic blur on the
frame. It is able to render big, as well as, small text illegible.

VI. CONCLUSION

This paper introduces a system for censoring sensitive
text from videos in order to improve content moderation for
online video platforms. The system utilizes text detection and
recognition models along with string matching techniques to

TABLE II
EVALUATION OF PERFORMANCE OF THE SYSTEM ON ART TASK 1: TEXT

DETECTION

Method Accuracy Precision Recall
This System 80.27% 83.42% 77.36%
AntFin-Cascade Mask R-CNN [24] 85.18% 87.08% 83.36%
I3CL [25] 84.03% 87.26% 81.03%

TABLE III
EVALUTION OF PERFORMANCE OF THE SYSTEM ON ART TASK 2: TEXT

RECOGNITION

Method Accuracy Avg. 1 - NED
This System 82.65% 93.96%
CLIP4STR [26] 85.9% -
MGP-STR [27] 84.9% -

TABLE IV
EVALUATION OF PERFORMANCE OF THE SYSTEM ON ART TASK 3: TEXT

SPOTTING

Method Accuracy Precision Recall
This System 78.32% 82.83% 74.21%
Tencent TEG OCR [28] 68.40% 70.30% 66.61%
Sogou OCR [29] 61.78% 65.68% 66.61%

Fig. 9. This figure shows that the system is able to correctly identify the
word “VETERANS” from the video frame.

Fig. 10. The figure shows that the system is unable to detect “DHL” and
numbers next to graphical items.

Fig. 11. The figure shows that the system is able to blur the texts to the point
that they are illegible.
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Fig. 12. The figure shows that the system struggles with censoring large text
as the text is still legible after blurring.

Fig. 13. The figure shows how dynamic blur is able to blur both large text
and small text, rendering them illegible.

flag the text, that matches the filter vocabulary, in various cases
and situations. The system was evaluated on text detection,
text recognition and text spotting tasks. An informal usability
study was conducted to analyze the user experience of the
system. Moreover, the strengths and weaknesses of the system
were discussed in various cases. Overall, the system is able to
achieve the goal of automating censorship of sensitive words
from the videos which is a step forward in the domain of
content moderation.

A. Future Work

Looking at the evaluation of the system, its design can be
improved.

1) Improving Throughput: The average processing fram-
erate of the system is about 10 frames per second, which
is very low considering that the test videos had a framerate
of 30 frames per second. The bottle-neck in performance
comes from the sequential processing, i.e., the processing
by the detection model followed by the recognition model.
This can be overcome by implementing parallelization of the
frame processing module of the system. This process would
buffer 30 frames from the video and distribute them in same-
sized batches amongst multiple process threads running on
distributed hardware. Frames processed by process threads are
collected and put in an output buffer while also preserving the
order of the frames as they were in the input video. If the
throughput higher than 30 frames per second can be achieved,
then this system could also be used to filter sensitive words
on live video streams, in “real time”.

2) Context-sensitive Filtering: The string-matching module
does a good job at matching exact as well as mispelled
words. However, it lacks any consideration of the context.
For example, if the vocabulary included the word “ass” and
the detected word in the frame was “classroom”, the string-
matching would flag this word as it includes “ass” substring.
Context-sensitive filtering would leverage natural language
processing (NLP) to capture the context of the flagged word
along with the words in its vicinity (words in closest bounding
coordinates). If the context of the flagged word is not classified
as profanity, based on the NLP model’s training, then this
flagged word is not removed from the frame. This type of
filtering would only work on profanity and not on sensitive
information such as names, addresses, etc. in the vocabulary.
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