
Support Vector Machines

About the Name...
A Support Vector

A training sample used to define classification
boundaries in SVMs

• located near class boundaries

Support Vector Machines

Binary classifiers whose decision boundaries are
defined by support vectors

2

SVMs: Design Principles
Discriminative

Similar to perceptrons, SVMs define linear decision
boundaries for two classes directly

• vs. Generative approaches, where decision boundaries defined by
estimated posterior probabilities (e.g. LDC, QDC, k-NN)

• Perceptron: decision boundary sensitive to initial weights, choice of
η (learning rate), order in which training samples are processed

Maximizing the Margin

Unlike perceptrons, SVMs produce a unique boundary
between linearly separable classes: the one that maximizes
the margin (distance to the decision boundary) for each class

• Often leads to better generalization 3

y1

y2

R2

optimal hyperplane
m

ax
im

um
m

ar
gi

n
b

m
ax

im
um

m
ar

gi
n

b

R1

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

More on ‘The Margin’

The Margin, b

Is the minimum distance of any sample to the
decision boundary.

Training SVMs

= maximizing the margin, moving the decision
boundary as far away from all training samples as
possible.

5

Maximizing the Margin

• At left: a sub-optimal margin

• At right: optimal margin

• y values: for linear function defined by the SVM. For linearly
separable data, all training instances correctly classified as -1 or
1 (locations in the margins have y values in (-1,1))

6

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1

*Bishop, “Pattern Recognition and Machine Learning,” p. 327

Binary Classification by SVM
SVMs Define Linear Decision Boundaries

Recall: so do perceptrons, LDCs for two classes, etc.

Classify By the Sign (+/-) of:

where Ns is the number of support vectors, yi the class of
support vector xi (+1 or -1), and is a weight (Lagrange
multiplier) associated with xi.

7

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

Ns: # support
vectors xi (with

> 0)

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

*Here, yi refers to class (-1
or 1) for instance xi

Training/Learning for SVMs
Optimization Problem:

Note:

Given a training set, two parameters of g(x)
need to be learned/defined: and

Once have been obtained, the optimal
hyperplane and may be determined.

8

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

SV signed dot products are constant.

But Where are the SVs?

The Support Vectors

...are those with non-zero weights in the
learned system, which will lie near decision
boundaries between classes.

Data points other than the support vectors
can now be discarded, as they do not affect
classification.

9

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

1

...and the bias w0?

Identity Above Holds for All SVs

But solving for w0 using a single SV less
numerically stable than averaging over all
support vectors, as shown below.

10

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

2

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





2

(classification rule)

Non-Linearly Separable Classes

May be handled by using a soft margin, in which points may lie,
and classification errors may occur (e.g. margin properties
defined by tunable parameters for v-SVM).

Often handled by transforming a non-linearly separable feature
space into a higher-dimensional one in which classes are
linearly separable (the “kernel trick”), and then use a ‘plain’
SVM for classification.

11

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

Example: Restructuring Feature Space
 (from Russell & Norvig, 2nd Edition)

12

Here, mapping is defined by:
f1 = x12 f2 = x22 f3=sqrt(2)x1x2

The “Kernel Trick”

• The expression for optimization above does
not depend on the dimensions of the feature
vectors, only their inner (‘dot’) product.

• We can substitute a kernelized version of the
inner product (k) for the inner product of
feature vectors, where k uses a non-linear
feature mapping phi:

• After training, we classify according to:

13

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





1

g(x) = wTx + w0

=
Ns�

i=1
λi yi xT

i x + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

1

g(x) = wTx + w0

g(x) =
Ns�

i=1
λi yi k(xi, x) + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

1

Example: Gaussian Kernel

14

g(x) = wTx + w0

g(x) =
Ns�

i=1
λi yi k(xi, x) + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x�) = exp(−||x− x�||2/2σ2)

1

Some Common Kernel Functions

Polynomial (d is degree of polynomial)

Gaussian

Additional Examples: See Bishop Ch. 6

15

g(x) = wTx + w0

g(x) =
Ns�

i=1
λi yi k(xi, x) + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x�) = exp(−||x− x�||2/2σ2)

1

g(x) = wTx + w0

g(x) =
Ns�

i=1
λi yi k(xi, x) + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x�) = exp(−||x− x�||2/2σ2)

k(x, x�) = (xTx�)d

1

Handling Multiple Classes
One vs. All

Create one binary classifier per class (~ discriminants gi(x))

• Most widely used: C (# class) SVMs needed; can select max class

One vs. One

Create one binary classifier for every pair of classes: choose
class with highest number of ‘votes’

• Variation: use error-correcting output codes (bit strings
representing class outcomes), use hamming distance to closest
training instances to choose class

• Expensive! (C(C-1)/2 SVMs needed)

DAGSVM

Organize pair-wise classifiers into a DAG, reduce
comparisons 16

Ambiguous Regions for Combinations of Binary Classifiers

17

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

‘one vs. all’ ‘one vs. one’

*Taken from Bishop, “Pattern Recognition and Machine Learning”, p. 183

Kernel Construction: Feature Map Sets

18

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
−0.4

0.0

1.0

−1 0 1
0.0

1.0

2.0

−1 0 1
0.0

3.0

6.0

−1 0 1
−1

−0.5

0

0.5

1

(from Bishop, p. 295)

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

2

Kernel construction from sets of basis functions
used for feature space mappings; red x indicates

location of x’

Polynomials ‘Gaussians’ Logistic Sigmoids

(M 1-D mappings)

Composing Kernel Functions

Interpretation in Mapped Feature Space:

Note: feature space same as ‘circle’ example from
earlier slide.

19

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + z2

2z2

= (x2
1,

�
(2)x1x2, x2

2)(z
2
1,

�
(2)z1z2, z2

2)T
= φ(x)Tφ(z).

2

(quadratic (polynomial) kernel)

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

= (x2
1,
√

2x1x2, x2
2)(z

2
1,
√

2z1z2, z2
2)

= φ(x)Tφ(z).

k(x, x�) = (xTx� + c)M, c > 0

k(x, x�)M

||x− x�||2 = xTx + (x�)Tx� − 2xTx�

k(x, x�) = exp(−xtx/2σ2) exp(xTx�/σ2) exp(−(x�)Tx�/2σ2)

2

More on Polynomial Kernels

Polynomial Kernel, containing all terms
up to degree M

e.g. for M=2, will add linear terms to the
feature mapping.

(F. mapping contains terms of degree M)
Example: if x, x’ are images, produces
weighted sum of all possible products of M

20

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + z2

2z2

= (x2
1,
√

2x1x2, x2
2)(z

2
1,
√

2z1z2, z2
2)

= φ(x)Tφ(z).

k(x, x�) = (xTx� + c)M, c > 0

k(x, x�)M

2

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + z2

2z2

= (x2
1,
√

2x1x2, x2
2)(z

2
1,
√

2z1z2, z2
2)

= φ(x)Tφ(z).

k(x, x�) = (xTx� + c)M, c > 0

k(x, x�)M

2

Valid Kernel Constructions

(see p. 296 of Bishop text)

21

‘Gaussian’ Kernel

Not a Probability Distribution

Normalization factor (value of mean) omitted

Demonstration the Kernel is Valid

Through rules for taking exp of a valid kernel; and
validity of f(x)k(x,x’)f(x’) for valid kernel k.

Example of Mapping to an Infinite Feature Space

22

g(x) = wTx + w0

g(x) =
Ns�

i=1
λi yi k(xi, x) + w0

max
λ




N�

i=1
λi −

1

2

�

i,j
λiλjyiyjx

T
i xj





subject to
N�

i=1
λiyi = 0

∀xi, λi ≥ 0

k(xi, xj) = φ(xi)
Tφ(xj)

k(x, x�) = exp(−||x− x�||2/2σ2)

1

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + z2

2z2

= (x2
1,
√

2x1x2, x2
2)(z

2
1,
√

2z1z2, z2
2)

= φ(x)Tφ(z).

k(x, x�) = (xTx� + c)M, c > 0

k(x, x�)M

||x− x�||2 = xTx + (x�)Tx� − 2xTx�

k(x, x�) = exp(−xtx/2σ2) exp(xTx�/σ2) exp(−(x�)Tx�/wσ2)

2

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

k(x, z) = (xTz)2

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1z

2
1 + 2x1z1x2z2 + z2

2z2

= (x2
1,
√

2x1x2, x2
2)(z

2
1,
√

2z1z2, z2
2)

= φ(x)Tφ(z).

k(x, x�) = (xTx� + c)M, c > 0

k(x, x�)M

||x− x�||2 = xTx + (x�)Tx� − 2xTx�

k(x, x�) = exp(−xtx/2σ2) exp(xTx�/σ2) exp(−(x�)Tx�/2σ2)

2

Kernels for Symbolic Objs.

‘Symbolic Objects’

Sets, strings, graphs, text documents

Valid Kernel for Sets Using Intersection

Feature space: set of all subsets of a set A.
Kernel k below can be shown to correspond
to an inner product in a feature space.

23

A1, A2 ∈ 2A (power set), k(A1, A2) = 2|A1∩A2|

3

Additional Slides

Linear Programming

Simplex

A bounded linear manifold; generalization of a triangle/tetrahedron in
higher dimensions.

Linear Programs

Defined by an objective function and set of linear constraints (variables
have scalar coefficients). Note restriction that weights are non-negative;
solution region lies within a simplex

Simplex Algorithm

An iterative algorithmic transformation of the ‘slack’ form of a linear
program using a method similar to Gaussian Elimination, but for
inequalities.

25

µ1

µ2

µ3

u1

u2

u3

α

FIGURE 5.18. Surfaces of constant z = !tu are shown in gray, while constraints of
the form Au" are shown in red. The simplex algorithm finds an extremum of z given
the constraints, that is, where the gray plane intersects the red at a single point. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Linear Programming: Cont’d

Suggested Reading

The well-known Cormen et al. algorithms
introduces Linear Programming and the
Simplex algorithm in Ch. 29 of the 2nd
edition:

• Text available to RIT students free online here:
http://library.books24x7.com.ezproxy.rit.edu/toc.asp?
site=K7ECY&bookid=3444

27

