
Support Vector Machines



About the Name...
A Support Vector

A training sample used to define classification 
boundaries in SVMs 

• located near class boundaries 

Support Vector Machines

Binary classifiers whose decision boundaries are 
defined by support vectors
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SVMs: Design Principles
Discriminative

Similar to perceptrons, SVMs define linear decision 
boundaries for two classes directly

• vs. Generative approaches, where decision boundaries defined by 
estimated posterior probabilities (e.g. LDC, QDC, k-NN)

• Perceptron: decision boundary sensitive to initial weights, choice of 
η (learning rate), order in which training samples are processed

Maximizing the Margin

Unlike perceptrons, SVMs produce a unique boundary 
between linearly separable classes: the one that maximizes 
the margin (distance to the decision boundary) for each class

• Often leads to better generalization 3
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FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.



More on ‘The Margin’

The Margin, b

Is the minimum distance of any sample to the 
decision boundary.

Training SVMs

= maximizing the margin, moving the decision 
boundary as far away from all training samples as 
possible.
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Maximizing the Margin

• At left: a sub-optimal margin

• At right: optimal margin

• y values: for linear function defined by the SVM.  For linearly 
separable data, all training instances correctly classified as -1 or 
1 (locations in the margins have y values in (-1,1))
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*Bishop, “Pattern Recognition and Machine Learning,” p. 327



Binary Classification by SVM
SVMs Define Linear Decision Boundaries

Recall: so do perceptrons, LDCs for two classes, etc. 

Classify By the Sign (+/-) of:

where Ns is the number of support vectors, yi the class of 
support vector xi (+1 or -1), and      is a weight (Lagrange 
multiplier) associated with xi. 
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Training/Learning for SVMs
Optimization Problem:

Note:

Given a training set, two parameters of g(x) 
need to be learned/defined:      and 

Once       have been obtained, the optimal 
hyperplane and       may be determined. 
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But Where are the SVs?

The Support Vectors

...are those with non-zero weights in the 
learned system, which will lie near decision 
boundaries between classes.

Data points other than the support vectors 
can now be discarded, as they do not affect 
classification.
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...and the bias w0?

Identity Above Holds for All SVs

But solving for w0 using a single SV less 
numerically stable than averaging over all 
support vectors, as shown below.
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Non-Linearly Separable Classes

May be handled by using a soft margin, in which points may lie, 
and classification errors may occur (e.g. margin properties 
defined by tunable parameters for v-SVM).

Often handled by transforming a non-linearly separable feature 
space into a higher-dimensional one in which classes are 
linearly separable (the “kernel trick”),  and then use a ‘plain’ 
SVM for classification.
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Example: Restructuring Feature Space
 (from Russell & Norvig, 2nd Edition)
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Here, mapping is defined by:
f1 = x12     f2 = x22   f3=sqrt(2)x1x2



The “Kernel Trick”

• The expression for optimization above does 
not depend on the dimensions of the feature 
vectors, only their inner (‘dot’) product.

• We can substitute a kernelized version of the 
inner product (k) for the inner product of 
feature vectors, where k uses a non-linear 
feature mapping phi:

• After training, we classify according to:
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Example: Gaussian Kernel
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Some Common Kernel Functions

Polynomial (d is degree of polynomial)

Gaussian

Additional Examples: See Bishop Ch. 6
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Handling Multiple Classes
One vs. All

Create one binary classifier per class (~ discriminants gi(x))

• Most widely used: C (# class) SVMs needed; can select max class 

One vs. One

Create one binary classifier for every pair of classes: choose 
class with highest number of ‘votes’

• Variation: use error-correcting output codes (bit strings 
representing class outcomes), use hamming distance to closest 
training instances to choose class 

• Expensive! ( C(C-1)/2 SVMs needed)

DAGSVM

Organize pair-wise classifiers into a DAG, reduce 
comparisons 16



Ambiguous Regions for Combinations of Binary Classifiers 
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Kernel Construction: Feature Map Sets

18

−1 0 1
0   

0.25

0.5 

0.75

1   

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
−0.4

0.0

1.0

−1 0 1
0.0

1.0

2.0

−1 0 1
0.0

3.0

6.0

−1 0 1
−1

−0.5

0

0.5

1

(from Bishop, p. 295)

yx




NS�

i=1
λiyix

T
i x + w0



 = 1

w0 =
1

NS

�

n∈S



yn −
�

m∈S
λmymxT

nxm





k(x,x�) = φ(x)Tφ(x�)

k(x, x�) = φ(x)Tφ(x�) =
M�

i=1
φi(x)φi(x

�)

2

Kernel construction from sets of basis functions 
used for feature space mappings; red x indicates 

location of x’

Polynomials ‘Gaussians’ Logistic Sigmoids
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Composing Kernel Functions

Interpretation in Mapped Feature Space:

Note: feature space same as ‘circle’ example from 
earlier slide.
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More on Polynomial Kernels

Polynomial Kernel, containing all terms 
up to degree M

e.g. for M=2, will add linear terms to the 
feature mapping.

(F. mapping contains terms of degree M)
Example: if x, x’ are images, produces 
weighted sum of all possible products of M 
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Valid Kernel Constructions

(see p. 296 of Bishop text)
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‘Gaussian’ Kernel

Not a Probability Distribution

Normalization factor (value of mean) omitted

Demonstration the Kernel is Valid

Through rules for taking exp of a valid kernel; and 
validity of f(x)k(x,x’)f(x’) for valid kernel k.

Example of Mapping to an Infinite Feature Space
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Kernels for Symbolic Objs.

‘Symbolic Objects’

Sets, strings, graphs, text documents

Valid Kernel for Sets Using Intersection

Feature space: set of all subsets of a set A. 
Kernel k below can be shown to correspond 
to an inner product in a feature space.
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A1, A2 ∈ 2A (power set), k(A1, A2) = 2|A1∩A2|
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Additional Slides



Linear Programming 

Simplex

A bounded linear manifold; generalization of a triangle/tetrahedron in 
higher dimensions.

Linear Programs

Defined by an objective function and set of linear constraints (variables 
have scalar coefficients). Note restriction that weights are non-negative; 
solution region lies within a simplex

Simplex Algorithm

An iterative algorithmic transformation of the ‘slack’ form of a linear 
program using a method similar to Gaussian Elimination, but for 
inequalities.
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FIGURE 5.18. Surfaces of constant z = !tu are shown in gray, while constraints of
the form Au" are shown in red. The simplex algorithm finds an extremum of z given
the constraints, that is, where the gray plane intersects the red at a single point. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.



Linear Programming: Cont’d

Suggested Reading

The well-known Cormen et al. algorithms 
introduces Linear Programming and the 
Simplex algorithm in Ch. 29 of the 2nd 
edition:

• Text available to RIT students free online here:
http://library.books24x7.com.ezproxy.rit.edu/toc.asp?
site=K7ECY&bookid=3444
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