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Regularization
+ Bias / Variance Trade off [1]
B(D) =E[g9(z;D)-1(2)]
V(D) = E[(9(z; D) - E[g(z; D)])’]

Increasing bias will result in decreasing
variance, and vice versa

[1] Justin, Domke, Lecture note of Statistical Machine Learning, 2009 Spring
Quarter, RIT
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[1] Justin, Domke, Lecture note of Statistical Machine Learning, 2009 Spring
Quarter, RIT



Bayesian Interpretation

e Given the prior density function of the
weights p(w)

 The error function

E=E(D)+ AE, (W)
could be interpreted with conditional probability
P(W|D) o« P(D |w)P(w)




Gaussian Weight Prior

E (W) = E (w) +2|w|
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Laplacian Weight Prior

E(w) = E(W)+4|w|

eInduces parameter sparsity by shrinking variables to exactly O
* non-differentiable




Elastic Net Prior

E (W) = E(W) + (W w)+1-a)(| w])

*Parameters go exactly to zero like In Laplacian priors but highly correlated variables
are shrunk together like in Gaussian priors.

[2] H. Zou and T. Hastie, Regularization and Variable Selection via the Elastic Net, Royal
Statistical Society Series B Statistical Methodology, 2005, VOL 67; No. 5, pp 768-768



Early Stopping

To end the training early before it converges

Learning in NN is a highly non-convex
optimization

It is unclear exactly how early stopping will
affect the objective function

Under a quadratic error function early
stopping is approximately a Gaussian prior



Invariances

 Regularization by making the classifier
invariant to transformations of the data

 Can be done by adjusting the training data
directly or the classifier directly



Convolutional Networks

Sub-sampling
layer

Input image Convolutional layer



Soft Weight Sharing

e The prior probability is a mixture of gaussians

 Pushes the weight values to form several
groups

* The weights in the group tend towards the
same value



