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What to do when feature distributions 
(likelihoods) are not ‘normal’

Don’t Panic!

While they may be suboptimal, LDC and QDC may still 
be applied, even though the assumption of normality is 
violated.  Often, this can yield usable results.

An Alternative:  Estimate feature density locally.

Rather than assume a parametric form for the 
distribution, estimate distributions using local estimates of 
the density around each training sample.
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Density Estimation:       
Density Estimation:

Defining a probability density function (pdf) using the 
neighboring samples around each training sample.

Probability x is in feature space region R:

Probability k of N samples from the unknown 
distribution lie in R (binomial distribution):
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If we assume x lies in R and that p(u) is 
constant in region R:

where VR is the volume of region R in Rn.

Using the previous two equations, we obtain:

As N tends to infinity and the region volume 
shrinks to a point (volume approaches 0), this 
produces the exact value for p(x).
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Multinomial (Histogram) Methods

Estimated Posteriors (approx. of Bayesian Classifier):
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data sets because otherwise many bins will be empty or may contain too few
elements to provide reliable estimates of the posterior probabilities. This phenom-
enon is known as the curse of dimensionality. The effect of the small number of
data points can be alleviated using the Laplace correction as explained in Chapter 5.

Example: Multinomial Classifier for the Banana Data. We applied the multi-
nomial classifier on the training set of the banana data (N ¼ 200). The results for
M ¼ 7 and M ¼ 15 bins per axis are shown in Figure 2.2.

The bins where the number of elements for both classes tie, or that are empty, are
left white while the others are shaded. The gray level indicates the class labels. We
calculated the classification error of this design using the leave-one-out method. For
each zj [ Z we found its bin, and then recalculated the class label of the bin by
updating m1 or m2. For example, assume that bin B originally contained m1 ¼ 4
points from v1 and m2 ¼ 3 points from v2 (so, B is labeled in v1). Let zB be a
point from Z such that it is located in B, and its class label is l(zB) ¼ v1. The updated
values for the leave-one-out (in this case leave zB out) are m1 m1 " 1 ¼ 3 and
m2 m2 ¼ 3. Now the class label of B is obtained by breaking the tie randomly.
If zB was from class v2, the label assigned to it would be v1 because the updated
values in that case would be m1  m1 ¼ 4 and m2 m2 " 1 ¼ 2. We also calcu-
lated the resubstitution error and the testing error on the independent test set.
Table 2.1 shows these errors.

Fig. 2.2 Classification regions found by a histogram classifier on the banana data. Plotted also is
the training set.

TABLE 2.1 Error Rates (in %) for Two Multinomial Classifiers
for the Banana Data.

M Resubstitution Leave-one-out Testing

7 7 20 10
15 5 35 26
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, therefore: 

Estimated Priors:

Divide feature space into 
equal bins/hypercubes 

(fix N, VR)
hist(x):  Assign class with 
most training samples in 
associated feature bin 

(region)

where m is the number of points in a bin.



Notes on Histogram Classifier
Curse of Dimensionality

Total number of bins grows exponentially with  
feature space dimensions (M bins per dimension: Mn)

• Number of samples needed to prevent empty or sparse 
bins that lead to poor estimates of the posterior 
probabilities

Sensitivity to Bin Size

More bins: noisier estimate. Fewer bins:  coarser 
estimate.
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With 15 bins the classification boundary is more precise but a larger part of the
feature space remains uncovered by the classifier (the white regions). This means
that more observations will have to be classified randomly and indeed the error
on the independent testing set for M ¼ 15 is bigger than the error for M ¼ 7. The
leave-one-out estimate seems overpessimistic in both examples. To examine this
further, we ran the histogram classifier for M ¼ 2, 3, . . . , 30 and calculated the
three errors as before. Figure 2.3 depicts the error rates versus M.

The curse of dimensionality leads to quick overtraining as the opposite trends of
the training and the testing errors indicate. The plot also demonstrates that the leave-
one-out estimate of the testing accuracy tends to be overpessimistic.

The multinomial classifier is both time and memory consuming, and, besides, cri-
tically depends on how large the data set is. The number of bins acts as a smoothing
factor: the more bins we have, the noisier the approximation of the discriminant
function. With large M, it is more likely that large regions of the feature space
will not be covered. The method of histograms is hardly ever used in the form
described here. However, is it an intuitive nonparametric model related to rule-
based classifiers and especially fuzzy classifiers (cf. [39]).

Fig. 2.3 Resubstitution, leave-one-out and testing error rates of the histogram classifier versus
the number of bins per axis.

NONPARAMETRIC CLASSIFIERS 53

data sets because otherwise many bins will be empty or may contain too few
elements to provide reliable estimates of the posterior probabilities. This phenom-
enon is known as the curse of dimensionality. The effect of the small number of
data points can be alleviated using the Laplace correction as explained in Chapter 5.

Example: Multinomial Classifier for the Banana Data. We applied the multi-
nomial classifier on the training set of the banana data (N ¼ 200). The results for
M ¼ 7 and M ¼ 15 bins per axis are shown in Figure 2.2.

The bins where the number of elements for both classes tie, or that are empty, are
left white while the others are shaded. The gray level indicates the class labels. We
calculated the classification error of this design using the leave-one-out method. For
each zj [ Z we found its bin, and then recalculated the class label of the bin by
updating m1 or m2. For example, assume that bin B originally contained m1 ¼ 4
points from v1 and m2 ¼ 3 points from v2 (so, B is labeled in v1). Let zB be a
point from Z such that it is located in B, and its class label is l(zB) ¼ v1. The updated
values for the leave-one-out (in this case leave zB out) are m1 m1 " 1 ¼ 3 and
m2 m2 ¼ 3. Now the class label of B is obtained by breaking the tie randomly.
If zB was from class v2, the label assigned to it would be v1 because the updated
values in that case would be m1  m1 ¼ 4 and m2 m2 " 1 ¼ 2. We also calcu-
lated the resubstitution error and the testing error on the independent test set.
Table 2.1 shows these errors.

Fig. 2.2 Classification regions found by a histogram classifier on the banana data. Plotted also is
the training set.

TABLE 2.1 Error Rates (in %) for Two Multinomial Classifiers
for the Banana Data.

M Resubstitution Leave-one-out Testing

7 7 20 10
15 5 35 26

52 BASE CLASSIFIERS

*Ties (white regions) 
broken randomly.

Evaluated using:
Training data (resub.)

Leave-one-out
Separate Test Set



Parzen Windows

Estimate density using a kernel function situated 
at each training sample.

Kernel function = ‘Parzen Window’

• Must peak at the origin, be nonnegative, have integral 
one over Rn (continuous, real-valued feature space)

Simplest kernel function: hyperbox with 
volume one

8

2.2.2 Parzen Classifier

This model is based again on Eq. (2.23) where N and VR are fixed, and k is found
from the data. Let K(t), t ¼ ½t1, . . . , tn#T [ Rn, be a kernel function (or Parzen
window), which peaks at the origin, is nonnegative, and has integral one over Rn.
The simplest model of a Parzen window is the following function

K(t) ¼ 1, if jtij $
1

2
, 8i ¼ 1, . . . , n

0, otherwise

8
<

: (2:29)

This function defines a hyperbox in Rn with side 1, centered at the origin. For all
points t within the hypercube, K(t) ¼ 1 and for points in Rn outside the hypercube,
K(t) ¼ 0. Let the Parzen window be centered at some x. Using the set Z for
calculating Eq. (2.23), and taking into account that VR ¼ 1, the pdf at x can be
approximated as
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N
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j¼1

K(Zj & x) (2:30)

This formula can be interpreted in a different way if we assume that there are
N hyperboxes, each centered on one point from Z. The approximation is then
calculated as the proportion of such hyperboxes that contain x. The multidimen-
sional kernel function centered on zj [ Rn is usually expressed in the form
(1=hn)K(x& zj=h), where h is a smoothing parameter and
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Here S is a specified covariance matrix determining the shape of the kernel. The
class-conditional pdfs are estimated using the sample set Z [4,24] by

p̂p(xjvi) ¼
1

Ni

X

l(zj)¼vi

1

hn
K

x& zj
h

" #
(2:33)

where Ni is the number of elements of Z from class vi. The estimate is asymptotically
unbiased if the smoothing parameter h is a function of the number of samples Ni, such
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Parzen Windows Cont’d
Density estimate using kernel function K (k is number 
of windows containing x):

Introduce smoothing parameter h to kernel fn, to avoid 
sparse density estimates:

Common kernel: Multidimensional Gaussian:

• S is covariance matrix (shape of kernel) 
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vertical scales must be used to show their structure. From: Richard O. Duda, Peter E.
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Parzen Windows, Cont’d
Class-conditional density estimates (left);  
restriction on h for unbiased asymptotic 
estimate (h fn of class i train samples, right):

Estimates for posterior probability (using Ni/N 
for prior probability estimates):
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2.2.2 Parzen Classifier

This model is based again on Eq. (2.23) where N and VR are fixed, and k is found
from the data. Let K(t), t ¼ ½t1, . . . , tn#T [ Rn, be a kernel function (or Parzen
window), which peaks at the origin, is nonnegative, and has integral one over Rn.
The simplest model of a Parzen window is the following function
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This function defines a hyperbox in Rn with side 1, centered at the origin. For all
points t within the hypercube, K(t) ¼ 1 and for points in Rn outside the hypercube,
K(t) ¼ 0. Let the Parzen window be centered at some x. Using the set Z for
calculating Eq. (2.23), and taking into account that VR ¼ 1, the pdf at x can be
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Here S is a specified covariance matrix determining the shape of the kernel. The
class-conditional pdfs are estimated using the sample set Z [4,24] by
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where Ni is the number of elements of Z from class vi. The estimate is asymptotically
unbiased if the smoothing parameter h is a function of the number of samples Ni, such
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where the term C(x, h, N) depends on x, h, and N, but not on the class label. The
approximation of the conditional pdfs under the above conditions is asymptotically
unbiased. Therefore, using the class-conditional pdfs estimated by Eq. (2.36) we obtain
asymptotically the Bayes classifier. A set of optimal discriminant functions can be
obtained from Eq. (2.36) by ignoring C(x, h, N); that is,
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For the Gaussian kernel (2.32)
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where

½dM(x, zj)$2 ¼ (x" zj)
TS"1(x" zj) (2:39)

is the squared Mahalanobis distance between x and zj in Rn.
Parzen classifier is a beautiful theoretical model whose main disadvantages are:

. Parzen classifier needs all of Z as the prototype set, which can be too time-
consuming for large N.

. The choice of h is difficult: small h leads to spiky approximations of the pdfs;
big h oversmooths the pdfs.

A practical recommendation offered by some authors is to try several values of h and
select the one producing the smallest error rate. Reduced and weighted Parzen
models are proposed in the literature [32,40]. The real value of Parzen classifier
lies in the fact that it is the statistical counterpart of several important classification
methods such as radial basis function networks [41,42], the probabilistic neural net-
work (PNN) [43], and a number of fuzzy classifiers [44–46].
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Asymptotically under the 
above assumption, 

we obtain a Bayesian Classifier.



Parzen Classifier
Discriminant functions: 

Properties:

• With unbiased estimators (appropriate h values), produces an 
optimal Bayesian Classifier;  in practice h varied over an interval, 
one producing smallest error chosen

• Density estimates require every training sample for every classifier 
input.

• Parallel implementation: Probabilistic  Neural Nets (see DHS, Ch. 4)
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Gaussian Kernel:

(Squared Mahalanobis Distance)
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FIGURE 4.9. A probabilistic neural network (PNN) consists of d input units, n pat-
tern units, and c category units. Each pattern unit forms the inner product of its
weight vector and the normalized pattern vector x to form z = wtx, and then it emits
exp[(z − 1)/σ 2]. Each category unit sums such contributions from the pattern unit con-
nected to it. This ensures that the activity in each of the category units represents the
Parzen-window density estimate using a circularly symmetric Gaussian window of co-
variance σ 2I, where I is the d ×d identity matrix. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.



k-Nearest Neighbor

Recall our general formula for nonparametric 
density estimation:

Multinomial and Parzen Density Estimates:

Fix N and VR, estimate k

k-Nearest Neighbor Density Estimation:

Fix k and N, allow VR to vary.
15

p̂(x|ωi)

p∗ = P (x ∈ R) =
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R
p(u)du
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(p∗)k(1− p∗)N−k

p∗ ≈ k

N

p∗ ≈ p(x)
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du = p(x)VR

p(x) ≈ k

NVR
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k-NN Density Est./Classification
Nearest-Neighbor Posterior Estimation:

Notes

• Regions and region volume vary by training sample and training set.

• Region volume does not affect classifier output.

• k-NN classifier is Bayes-optimal when N approaches infinity, and 
region volume approaches 0 (equivalently, when k approaches infinity 
and k/N approaches 0)

• For 1-NN (single nearest neighbor), as N approaches infinity the error 
rate is bounded above by twice the Bayes error rate. 16

where Ni is the number of elements from class vi in Z. Using Eq. (2.26) for
estimating P(vi), the posterior probabilities are obtained as

P(vijx) ¼
p(xjvi)P(vi)

p(x)
"

ki
NiVR

Ni

N
k

NVR

(2:42)

hence

P(vijx) "
ki
k

(2:43)

The minimum error (Bayes) classifier using the approximations above will assign
x to the class with the highest posterior probability, that is, the class most rep-
resented amongst the k nearest neighbors of x. The region R and the volume VR,
respectively, are specific for each x [ Rn and a data set Z. The k-nn classification
rule, however, assigns the class label using only the numbers ki, i ¼ 1, . . . , c, so the
winning label does not depend on VR.

k-nn is Bayes-optimal when N ! 1 and VR ! 0. The expression VR ! 0 is
equivalent to k ! 1 and k=N ! 0. That is, the error rate of the k-nn classifier,
Pk-nn satisfies

lim
N!1
k!1
k=N!0

Pk-nn ¼ PB (2:44)

where PB is the Bayes error. When k is 1 (the nearest neighbor rule, denoted 1-nn),
and N ! 1, the error rate P1-nn is bounded from above by twice the Bayes error rate
[2]; that is,

P1-nn # 2PB (2:45)

Notice that different metrics will define different regions R. Regardless of the
metric used, the k-nn rule is applied in the same way. The type of the metric does
not change the asymptotic properties of k-nn because the shape of R is not fixed
in Eq. (2.23).

Example: 1-nn, 3-nn and Voronoi Diagrams. Figure 2.4a displays the 1-nn and
3-nn rule on a randomly generated data set with two classes. The diamond shows
the vector to be classified and the arrows join this vector to its three nearest neigh-
bors. The new object is assigned to the class of “dots” by the 1-nn rule because such
is the label of the closest neighbor. The 3-nn rule labels the object as a “cross”
because such are the labels of the second and the third neighbors (majority: 2 out
of 3 votes). The classification regions obtained by the 1-nn rule can be depicted
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Density Estimation Using k-NN
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FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and notice that disconti-
nuities in the slopes generally occur along lines away from the positions of the points
themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifi-
cation. Copyright c© 2001 by John Wiley & Sons, Inc.

Note: region
volume used
in estimation

p̂(x|ωi)

p∗ = P (x ∈ R) =
�

R
p(u)du

pk =

�
N

k

�

(p∗)k(1− p∗)N−k

p∗ ≈ k

N

p∗ ≈ p(x)
�

R
du = p(x)VR

p(x) ≈ k

NVR

2



using Voronoi diagrams as shown in Figure 2.4b. The Voronoi bin V for zj [ Z is
defined as the set of points in Rn whose nearest neighbor from Z is zj; that is,

V(zj) ¼ x x [ Rn, d(zj, x) ¼ min
zk[Z

d(zk, x)

!!!!

" #
(2:46)

where d(", ") is a distance in Rn. In this example we used the Euclidean distance.

There are three basic ways to vary the k-nn classifier:

. different distance metric in Rn;

. different value of k;

. edited versions of Z as prototype sets V.

While there is a neat theory for the case of continuous-valued features,
the problems with discrete and qualitative features start as early as defining simi-
larity. Aha et al. [48] use the following similarity function between two objects rep-
resented by n-dimensional vectors x and y with possibly mixed-type features.

Similarity (x, y) ¼ #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

f (xi, yi)

s

(2:47)

where

f (xi, yi) ¼
(xi # yi)

2, if the ith feature is numeric,
1# I (xi, yi), if the ith feature is binary or symbolic:

"
(2:48)

Fig. 2.4 Illustration of the 1-nn and 3-nn classification rules and Voronoi diagrams.
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1-nn: a dot is closest, assign ‘dot’
3-nn: dot and two x’s are neighbors, assign ‘x’

Voronoi diagram illustrates regions (Voronoi 
bins) closest to each training sample:

using Voronoi diagrams as shown in Figure 2.4b. The Voronoi bin V for zj [ Z is
defined as the set of points in Rn whose nearest neighbor from Z is zj; that is,

V(zj) ¼ x x [ Rn, d(zj, x) ¼ min
zk[Z

d(zk, x)

!!!!

" #
(2:46)

where d(", ") is a distance in Rn. In this example we used the Euclidean distance.

There are three basic ways to vary the k-nn classifier:

. different distance metric in Rn;

. different value of k;

. edited versions of Z as prototype sets V.

While there is a neat theory for the case of continuous-valued features,
the problems with discrete and qualitative features start as early as defining simi-
larity. Aha et al. [48] use the following similarity function between two objects rep-
resented by n-dimensional vectors x and y with possibly mixed-type features.

Similarity (x, y) ¼ #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

f (xi, yi)

s

(2:47)

where

f (xi, yi) ¼
(xi # yi)

2, if the ith feature is numeric,
1# I (xi, yi), if the ith feature is binary or symbolic:

"
(2:48)

Fig. 2.4 Illustration of the 1-nn and 3-nn classification rules and Voronoi diagrams.
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More Voronoi Diagrams

19

x1

x2

x1

x3

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



More Notes on k-NN
Benefits

• Simple, elegant, nice theoretical properties.

• Unlike multinomial (histogram) classifier, entire feature space mapped to 
a class (see Voronoi diagrams)

Drawbacks

• Expensive: in general, must compare all instances with every input (pre-
structuring sometime used), unless all comparisons parallelized (see DHS)

• Intolerant to noisy or redundant features

• Sensitive to distance metric

• No natural distance measure for nominal features

• Cannot handle missing feature values

• Little information about structure of data (local method) 20



Modifying k-NN Classifiers
Through:

1. Using a different value of k

2. Changing the distance metric (in Rn)

• Note: asymptotic properties hold, provided a valid distance metric is 
used. Four required properties for a metric:

• Nonnegative, reflexive: d(a,b) = 0 iff a = b, symmetric (d(a,b) = d(b,a)), 
triangle inequality: d(a,b) + d(b,c) ≥ d(a,c)

• Examples: Euclidean distance (L2), Manhattan Distance (L1)

3. Editing the training set Z (Prototype editing)

21



Prototype Editing and Extraction
Ideally

No objects have the same feature vector but a different class

• In this case, resubstitution error for training set Z is 0.

Motivations for Smaller Training Sets

Reduces both space and time requirements for classification.

Modifying the Training Set

Goal: define the smallest possible reference set V from Z to produce the 
highest possible 1-NN (k-NN) accuracy).  Approaches:

• Prototype selection/editing (V as subset of Z, all available data)

• Prototype extraction (generate new samples from Z for V)
22



Prototype Editing
Strategies

• Condensing: Find smallest subset of Z (V) that produces 0 
resubstitution error for Z.  Tends to retain (many) points 
near the decision boundary.

• Error-Based Editing: Find subset V with low (not necessarily 
0) resubstitution error for Z that generalizes well.  Tends to 
retain points toward the center of class regions rather than 
decision boundaries.

• Size/Accuracy Criterion: search over possible subsets of Z to 
minimize a resubstitution error criterion, e.g.:

23

set are called condensing techniques. Typically, condensing techniques retain
points from Z that are most likely to be misclassified (e.g., points that are
usually close to the classification boundaries).

. Find a subset V [ Z that has low (not necessarily zero) resubstitution error
rate and generalizes well. This will be called error-based editing (in Ref. [1]
it is called just “editing”). Error-based editing methods tend to eliminate the
points close to the boundaries and retain those that belong “most certainly”
in their own Bayes classification regions.

Being diametrically opposite, the two strategies typically lead to very different
reference sets V. Owing to their design, condensing methods cannot trade accuracy
for reduction in the number of prototypes. Such trade-off is very desirable because at
the expense of one or two misclassifications we might be able to halve the size of V.
Standard error-based editing methods do not have an explicit mechanism to limit the
number of prototypes or penalize reference sets of high cardinality. They often pro-
duce more prototypes than are needed. Therefore it is reasonable to apply first an
error-based method and then a condensing method on the resultant set of prototypes.

An alternative approach is to specify explicitly the number of prototypes and the
amount of accuracy to trade off for reducing the number of prototypes. For example,
we can use a criterion of the following type:

max
S#Z

J(S) ¼ max
S#Z

Accuracy(S)" a
jSj
jZj

! "
(2:49)

where a is a constant weighting the importance of the cardinality reduction. The
accuracy of the candidate subset S is measured using 1-nn with S as the reference
set. We can use random search or guided random search through the subsets of Z
to optimize J(S). Possible optimization techniques are genetic algorithms [50–52]
or tabu search [53].

Three editing algorithms are explained below. These were chosen because they
are possibly the simplest, have different flavors, and have been the points of depar-
ture for many variations.

Hart’s Method. This method belongs to the condensing group [54]. It gradually
builds the subset V starting with z1 and moving into V every element of Z that is
misclassified by 1-nn when using the current V as the reference set. The procedure
loops through Z until all of Z is classified correctly. This technique tends to retain
the points close to the classification boundaries and discard the inside points.

Wilson’s Method. This method [55] is from the error-editing group. Wilson pro-
poses to run k-nn (recommended value k ¼ 3) on Z and mark for deletion all
elements that are misclassified. By deleting the marked elements from Z, we obtain
the reference set V to be used with the 1-nn classifier. Wilson’s method is the basis
of the asymptotically optimal editing method called MULTIEDIT [1]. MULTIEDIT
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Example Editing Methods
Hart’s Method (Condensing)

Start with one sample from Z in V.  For each subsequent 
sample, if misclassified by 1-NN on current set, add to V.  
Iterate over Z until no instances are misclassified.

Wilson’s Method (Error-Editing)

Run 3-NN on Z, delete all misclassified samples to produce V.

Random Editing (for comparison)

Choose |V|. Sample |V| elements from Z  T times. Return the 
set with the smallest substitution error (for Z).

24



works well on large data sets with cloud-shaped classes. If the overlap of the classes
is high, MULTIEDIT could eventually rule out all elements of some of the classes
[29,50].

Random Editing. This is simple and sometimes surprisingly successful [52,56].
We specify the desired number of prototypes v ¼ jVj, c " v , N and the maximum
number of trials T , generate T random subset-candidates V # Z, and return the set
with the smallest resubstitution error.

Example: Prototype Selection for the Banana Data. The three basic editing
methods were applied to the training part of the banana data. We also appliedWilson
followed by Hart (denoted Wilson þ Hart). The results are displayed in Figure 2.5.

The classification region of the “left” banana, obtained by the 1-nn classifier
using the edited reference set is shaded in gray. The original training data is also
plotted and the prototypes that the respective method has retained are encircled.

Fig. 2.5 Training data and classification regions for the banana data set obtained by the 1-nn
classifier and four prototype selection methods. The prototypes retained by the respective
method are encircled.
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As expected, since the classes are not heavily overlapped, Wilson’s method kept
unnecessarily almost the whole data set. Hart’s method retained mostly borderline
points to preserve the boundary. Visually, the combination of the two (Wilson þ
Hart) improves on both. The random editing was run for T ¼ 1000 and desired car-
dinality of the reference set v ¼ 10. Table 2.2 shows the training and testing errors of
the four methods.

We might have been lucky with the random editing for this example as it hap-
pened to be the best (let alone the fastest) among the four methods. It gave the lowest
testing error with the smallest number of prototypes retained. This method is inter-
esting in the context of multiple classifier systems because of its potential to discover
disparate subsets of good reference quality as a basis for a diverse ensemble. Diver-
sity, as we shall discuss later, is among the most important factors for the success of
a classifier ensemble.

2.3.2.2 Calculating Prototypes from Data (Prototype Extraction). By
selecting prototypes from Z we have a limited choice of points in Rn. Better results
might be achieved by constructingV , Rn by choosing from the whole ofRn. There
are numerous strategies and techniques for extracting prototypes including

Competitive Learning. Examples of this group are the neural network models
called vector quantization (VQ) and learning vector quantization (LVQ) [57,58],
and various modifications [59–63]. There are also competitive clustering algorithms
such as the dog–rabbit algorithm, and Chang’s method. A modification of the orig-
inal Chang’s method is proposed by Bezdek et al. [64].

Modified Chang looks for a consistent set of prototypes, which is not necessarily
a subset of Z. The procedure starts with the whole of Z as the set of prototypes V.
The pair of prototypes of the same class label that are closest to each other is
identified and called the “parents.” The two prototypes are averaged to get a single
replacement of the pair, called the “child.” The new set where the two parents are
replaced by the child is checked for resubstitution errors. If no errors occur, the
merger is accepted and the new set becomes the current V. Otherwise, the merger
is rejected and the pair of parents is marked as ineligible. The search continues
with the next (eligible) pair of closest prototypes until all remaining parent couples
become ineligible.

Using Gradient Descent. Tuning prototype locations by gradient descent is pro-
posed in Refs. [65–67].

TABLE 2.2 Error Rates (in %) for 1-nn and Four Editing Methods for the Banana Data.

Whole set Hart Wilson Wilson þ Hart Random

Training error (%) 0 0 7 5 4
Testing error (%) 10 10 8 8 6

No. of prototypes 100 28 92 13 10
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Protype Extraction
Idea

Allow training samples to be inferred at points in 
feature space, rather than being directly from Z.

Approaches

• Competitive learning: LVQ (learning vector quantization, 
a form of neural network model)

• Using gradient descent to tune sample locations.

• Bootstrap: variation of random editing, where new 
samples are inferred as the mean of its k-nearest 
neighbors
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Example Prototype Extraction Methods

Chang (competitive learning)

Tries to find consistent prototype set (zero resubstitution 
error). 

• Initially,  V = Z. 

• Iteratively finds two symbols (‘parents’) closest within a 
class, and replaces them by their average (‘child’). 

• If this produces no error, keep the ‘child,’ otherwise 
mark symbol pair as ineligible. 

• Repeat until all remaining ‘parent’ candidates produce a 
‘child’ leading to an error.
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Example Extractions, Cont’d
Bootstrap (random method)

Extend random editing to include a vector of 
parameters (v1, ..., vi) for the number of elements to 
sample from each class. For chosen k, at each trial T:

• Sample |V| elements, according to (v1, ..., vi) = |V|

• Replace each selected sample by the mean of its k-nearest 
neighbors from the same class

• Return the prototype set with the lowest resubstitution 
error out of the T trials.
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Example: Prototype Extraction

Chang: finds 19 prototypes

Bootstrap: k=5, T = 1000, V = 10 (5,5)

• Train Error:  Chang 0%,  Bootstrap 3%

• Test Error:   Chang 16%,  Bootstrap 12% 29

Bootstrap Random Methods. Hamamoto et al. [68] propose four bootstrap
methods for prototype extraction. A modification of the simplest, and the most suc-
cessful of the four (according to Ref. [68]) is explained below.

Bootstrap editing is a variant of the random editing method described earlier.
Again, we perform T trials, where T is a constant determined in advance. We
also have to pick c numbers, vi, i ¼ 1, . . . , c, where vi is the number of prototypes
from class vi that we wish to have in V. At each trial, v elements of Z are picked
at random, vi from class vi. To construct V from these, each selected element is
replaced by the mean of its k nearest neighbors in Z from its own class. The number
of neighbors k . 1 is a tuning parameter of the algorithm. There is no theoretical
reason why the number of prototypes per class should be equal for all classes or
proportional to the prior probabilities. We can pick any set of numbers
v1, . . . , vc(vi " Ni), or choose them at random too.

Example: Prototype Extraction for the Banana Data. Figure 2.6 shows the
regions and the prototypes extracted by the Modified Chang and the bootstrap edit-
ing. The bootstrap method was run for T ¼ 1000 selections (same as the random
editing in the previous example) with 10 prototypes altogether (5 per class), for
number of nearest neighbors k ¼ 5.

Overlaid again is the training set and the prototypes are marked by “#” and
encircled. The training error for Modified Chang is 0 by design and the testing
error was found to be 16 percent. In all, 19 prototypes were found. For the bootstrap
editing, 10 prototypes were constructed showing training error of 3 percent and test-
ing error of 12 percent.

It should be mentioned that even though the prototype extraction method could
theoretically lead to better results, none of the methods described has any theoretical

Fig. 2.6 Training data and classification regions for the banana data set obtained by the 1-nn
classifier and two prototype extraction methods. The prototypes retained by the respective
method are encircled.
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Caveat

Theoretically, prototype extraction can 
produce better results than editing

• Locations where samples might be placed is unrestricted 
(e.g. can theoretically produce boundaries matching the 
underlying distribution)

• ...but there is no theoretical justification for the 
extraction methods described.
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Incorporating Distances into k-NN

Model 1: Select class with smallest hypersphere containing exactly 
k instances

Model 2: For given k, select class based on ki/a2, where a is the 
radius of the hypersphere containing the ki samples.
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to be the distance from x to its farthest neighbor from vi among the k neighbors.
Then the ratio ki=ani determines the class label of x where ki is the number of neigh-
bors from vi and ai is the distance to the farthest one of them.

Example: k-nn: Theoretical Model No. 2. An illustration of this k-nn model for
k ¼ 9 is presented in Figure 2.7b on the same data set as in Figure 2.7a. The shaded
circle contains the set of nine nearest neighbors to x, regardless of their class labels.
Within this set, there are k1 ¼ 2 “H”s (dots), k2 ¼ 1 “N”s (open circles), and k3 ¼ 6
“O”s (triangles). A (hyper-) sphere with radius a encloses the six triangles, therefore
the respective ratio is gO(x) ¼ 6=a2 ¼ 1:0458. The other two discriminant functions
are respectively gH(x) ¼ 2=b2 ¼ 0:7080 and gN(x) ¼ 1=c2 ¼ 0:3685. The highest
value determines x class label, in this case the label for [0, 0] is the letter “O.”
This model also coincides with the baseline 1-nn design for k ¼ 1.

2.3.3.3 Theoretical Model No. 3. This is the classical k-nn model where one
hypersphere of radius r contains all k nearest neighbors from Z regardless of the
class labels. Then the value of r becomes irrelevant for the classification decision
for a given x, and is dropped from Eq. (2.57). The discriminant functions are the
number of neighbors ki.

We can also vary ki and substitute into Eq. (2.57) the respective radius ai.
Curiously, all these variants are asymptotically Bayes-optimal; that is, for

N ! 1, k ! 1 and k=N ! 0, Eq. (2.56) produces the true posterior probability,
therefore Eq. (2.57) ensures the minimal-error classification. In the finite-sample
case, however, there could be better k-nn models. In search of such a model, Dudani
proposed a distance-based k-nn [71]. Denote by Z(x) the subset of Z containing the k
nearest neighbors of x. Dudani’s discriminant functions are

gi(x) ¼
X

zj[Z(x) ,

l(zj )¼vi

wj(x), i ¼ 1, . . . , c (2:58)

Fig. 2.7 Illustration of k-nn Theoretical models no. 1 and no. 2.
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Quick Aside: Data Structures

A number of metric data structures may be used 
to accelerate NN classification, or similarity 
comparison in general:

• k-d Trees (partitions features space)

• R-trees (partitions data set)

• M-trees (sample/distance-based indexing)

Ref: Foundations of Multidimensional and Metric Data 
Structures by Hanan Samet (2006))
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