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What to do when feature distributions
(likelihoods) are not ‘normal’

Don’t Panic!

While they may be suboptimal, LDC and QDC may still
be applied, even though the assumption of normality is
violated. Often, this can yield usable results.

An Alternative: Estimate feature density locally.

Rather than assume a parametric form for the
distribution, estimate distributions using local estimates of
the density around each training sample.
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Density Estimation: ?(xwi)

Density Estimation:

Defining a probability density function (pdf) using the
neighboring samples around each training sample.

Probability X is in feature space region R:

p*=P(x€eR)= /ép(u)du

Probability k of N samples from the unknown
distribution lie in R (binomial distribution):

N * *\ N — * o~ k
pr = <k>(p )F(1—p")" " where p & &
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If we assume X lies in R and that p(u) is
constant in region R:

p~p(x) [ du=p(x)Vi
where VR is the volume of region R in R".

Using the previous two equations, we obtain:
k

NVg

As N tends to infinity and the region volume
shrinks to a point (volume approaches 0), this
produces the exact value for p(x).

p(x) ~




Multinomial (Histogram) Methods

M = T bins per axis

M = 15 bins per axis

Divide feature space into
i N = ST~ equal bins/hypercubes
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Fig. 2.2 Classification regions found by a histogram classifier on the banana data. Plotted also is
the training set.

Estimated Priors:

. N,
Plw;) = i
Estimated Posteriors (approx. of Bayesian Classifier):
, _ _mi_ N m;
P(w;]x) = p(xfw:) Plws) NV N therefore: P(w;|x) ~ —
p(x) NVg m
RIT where m is the number of points in a bin. ~#,




Notes on Histogram Classifier

Curse of Dimensionality

Total number of bins grows exponentially with
feature space dimensions (M bins per dimension: M")

® Number of samples needed to prevent empty or sparse
bins that lead to poor estimates of the posterior
probabilities

Sensitivity to Bin Size

More bins: noisier estimate. Fewer bins: coarser
estimate.
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Fig. 2.3 Resubstitution, leave-one-out and testing error rates of the histogram classifier versus
the number of bins per axis.

M = T bins per axis M = 15 bins per axis

*Ties (white regions)
broken randomly.

Evaluated using:
Training data (resub.)
Leave-one-out
Separate Test Set
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Fig. 2.2 Classification regions found by a histogram classifier on the banana data. Plotted also is
the training set.




Parzen Windows
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Estimate density using a kernel function situated
at each training sample.

Kernel function = ‘Parzen Window’

® Must peak at the origin, be nonnegative, have integral
one over R" (continuous, real-valued feature space)

Simplest kernel function: hyperbox with

volume one |
1, ifl|<=,Vi=1,...,n
K(t) = 2

0, otherwise
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Parzen Windows Contd
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Density estimate using kernel function K (k is number
of windows containing x)°

px) ~ ZK(Z ~X)

Introduce smoothmg parameter h to kernel fn, to avoid
sparse density estimates:

1 X —Z;
—K( J)d _
LG o\ )

Common kernel: Multidimensional Gaussian:

® S is covariance matrix (shape of kernel)

Lk (X_Z") : [ L (x—20)"57( )]
— K¢ = - exXp| — 5 (X — Z X — Zg
I'T h h ht (2m)"* /IS 202




FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window
functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.
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FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the §(x) are normalized, different
vertical scales must be used to show their structure. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.
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Parzen Windows, Cont'd
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Class-conditional density estimates (left);
restriction on h for unbiased asymptotic
estimate (h fn of class i train samples, right):

pxto =3 3 pk(*%) lim AV =0

I l(zj):wi

Estimates for posterior probability (using Ni/N
for prior probability estimates):

Plw;|x) = 1 1 K(X — Zj) Asymptotically unsier the
Np(x) e, h" h above assumption,
o we obtain a Bayesian Classifier.
X — Z;
cwam X A5
- Cx,h,N) ) _ . 3
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Parzen Classifier

Discriminant functions:

Gaussian Kernel:

l(zj):wi

1
0= Y k(=) 50 32 o]ttt o |
i(X) =
s - h : ro
(zj)=w; l[du(x, 2))]" = (x — 7))’ S (x — z))

. (Squared Mahalanobis Distance)
Properties:

® With unbiased estimators (appropriate h values), produces an
optimal Bayesian Classifier; in practice h varied over an interval,
one producing smallest error chosen

® Density estimates require every training sample for every classifier
input.

® Parallel implementation: Probabilistic Neural Nets (see DHS, Ch. 4)
RIT z
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pattern
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FIGURE 4.9. A probabilistic neural network (PNN) consists of d input units, n pat-
tern units, and c category units. Each pattern unit forms the inner product of its
weight vector and the normalized pattern vector x to form z = w'x, and then it emits
exp[(z — 1)/o*]. Each category unit sums such contributions from the pattern unit con-
nected to it. This ensures that the activity in each of the category units represents the
Parzen-window density estimate using a circularly symmetric Gaussian window of co-
variance o*l, where I is the d x d identity matrix. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.




k-Nearest Neighbor

~

Recall our general formula for nonparametric

density estimation:
k

NVg
Multinomial and Parzen Density Estimates:

p(x) ~

Fix N and VR, estimate k

k-Nearest Neighbor Density Estimation:

Fix k and N, allow VR to vary.
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k-NN Density Est./Classification

Nearest-Neighbor Posterior Estimation:

ki N;
VP(w) NVLN k;
p(x) K k
NVg (also discriminant

or k-NN classifier
Notes f fier)

® Regions and region volume vary by training sample and training set.
® Region volume does not affect classifier output.

® [k-NN classifier is Bayes-optimal when N approaches infinity, and
region volume approaches 0 (equivalently, when k approaches infinity
and k/N approaches 0)

® For I-NN (single nearest neighbor), as N approaches infinity the error
RIT rate is bounded above by twice the Bayes error rate. V-
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Density Estimation Using k-NN

k

" Note:region p(x)~ ——
volume used NVR
. in estimation
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FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001

by John Wiley & Sons, Inc. N
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FIGURE 4.11. The k-nearest-neighbor estimate of a two-dimensional density for k =
Notice how such a finite n estimate can be quite “jagged,” and notice that discon

5.
ti-

nuities in the slopes generally occur along lines away from the positions of the points

themselves. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classi
cation. Copyright © 2001 by John Wiley & Sons, Inc. /
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lk-NIN Classification
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Fig. 2.4 lllustration of the 1-nn and 3-nn classification rules and Voronoi diagrams.

|-nn: a dot is closest, assign ‘dot’
3-nn: dot and two X’s are neighbors, assign X’

Voronoi diagram illustrates regions (Voronoi
bins) closest to each training sample:

V(z;) = {X

x € R", d(z;, X) = min d(z, X)}
ZkEZ




More Voronoi Diagrams

XJ

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space into Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.




More Notes on k-NN

Benefits

® Simple, elegant, nice theoretical properties.

® Unlike multinomial (histogram) classifier, entire feature space mapped to
a class (see Voronoi diagrams)

Drawbacks

® Expensive: in general, must compare all instances with every input (pre-
structuring sometime used), unless all comparisons parallelized (see DHY)

® Intolerant to noisy or redundant features
® Sensitive to distance metric
® No natural distance measure for nominal features

® Cannot handle missing feature values

“F e Little information about structure of data (local method) s 2




Modifying k-NN Classifiers

Through:

|. Using a different value of k

2. Changing the distance metric (in R")

® Note: asymptotic properties hold, provided a valid distance metric is
used. Four required properties for a metric:

® Nonnegative, reflexive: d(a,b) = 0 iff a = b, symmetric (d(a,b) = d(b,a)),
triangle inequality: d(a,b) + d(b,c) = d(a,c)

® Examples: Euclidean distance (L2), Manhattan Distance (L))

3. Editing the training set Z (Prototype editing)

e
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Prototype Editing and Extraction

|deally

No objects have the same feature vector but a different class
® |n this case, resubstitution error for training set Z is 0.

Motivations for Smaller Training Sets

Reduces both space and time requirements for classification.

Modifying the Training Set

Goal: define the smallest possible reference setV from Z to produce the
highest possible |-NN (k-NN) accuracy). Approaches:

® Prototype selection/editing (V as subset of Z, all available data)

® Prototype extraction (generate new samples from Z for V)
I-T £ n
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Prototype Editing

Strategies

® (Condensing: Find smallest subset of Z (V) that produces 0
resubstitution error for Z. Tends to retain (many) points
near the decision boundary.

® [rror-Based Editing: Find subsetV with low (not necessarily
0) resubstitution error for Z that generalizes well. Tends to
retain points toward the center of class regions rather than
decision boundaries.

® Size/Accuracy Criterion: search over possible subsets of Z to
minimize a resubstitution error criterion, e.g.:

N
Iglcal% J(S) = m_a%( { Accuracy(S) — o m}

1T (alpha is a constant weight) £

'4
s
‘—‘
B
—




Example Editing Methods

Hart’s Method (Condensing)

Start with one sample from Z inV. For each subsequent
sample, if misclassified by |-NN on current set, add to V.
Iterate over Z until no instances are misclassified.

Wilson’s Method (Error-Editing)

Run 3-NN on Z, delete all misclassified samples to produce V.

Random Editing (for comparison)

Choose |V|. Sample |V| elements from Z T times. Return the
set with the smallest substitution error (for Z).

R J,'_r' /, 24
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Wilson + Hart
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TABLE 2.2 Error Rates (in %) for 1-nn and Four Editing Methods for the Banana Data.

Whole set Hart Wilson Wilson + Hart Random
Training error (%) 0 0 7 5 4
Testing error (%) 10 10 8 8 6
No. of prototypes 100 28 92 13 10
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Fig. 2.5 Training data and classification regions for the banana data set obtained by the 1-nn
slassifier and four prototype selection methods. The prototypes retained by the respective




Protype Extraction

ldea

Allow training samples to be inferred at points in
feature space, rather than being directly from Z.

Approaches

® Competitive learning: LVQ (learning vector quantization,
a form of neural network model)

® Using gradient descent to tune sample locations.

® Bootstrap: variation of random editing, where new
samples are inferred as the mean of its k-nearest
neighbors




Example Prototype Extraction Methods

Chang (competitive learning)

Tries to find consistent prototype set (zero resubstitution
error).

® |Initially, V = Z.

® |[teratively finds two symbols (‘parents’) closest within a
class, and replaces them by their average (‘child’).

® |[f this produces no error, keep the ‘child, otherwise
mark symbol pair as ineligible.

® Repeat until all remaining ‘parent’ candidates produce a

‘child’ leading to an error.
R-IT £, 27




Example Extractions, Cont'd

Bootstrap (random method)

Extend random editing to include a vector of
parameters (vi, ..., vi) for the number of elements to
sample from each class. For chosen k, at each trial T:

® Sample |V| elements, according to (vi, ..., vi) = |V]|

® Replace each selected sample by the mean of its k-nearest
neighbors from the same class

® Return the prototype set with the lowest resubstitution
error out of the T trials.

28




Example: Prototype Extraction

Madilied Chang Boaolstrap
5 o 5
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Fig. 2.6 Training data and classification regions for the banana data set obtained by the 1-nn
classifier and two prototype extraction methods. The prototypes retained by the respective
method are encircled.

Chang: finds |19 prototypes
Bootstrap: k=5,T = 1000,V = 10 (5,5)
® Train Error: Chang 0%, Bootstrap 3%

RIT ® Test Error: Chang 16%, Bootstrap 12% s




Caveat

Theoretically, prototype extraction can
produce better results than editing

® | ocations where samples might be placed is unrestricted
(e.g. can theoretically produce boundaries matching the
underlying distribution)

® _.but there is no theoretical justification for the
extraction methods described.
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Incorporating Distances into k-NN
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Fig. 2.7 lllustration of k-nn Theoretical models no. 1 and no. 2.
Model |: Select class with smallest hypersphere containing exactly
k instances

Model 2: For given k, select class based on ki/a%, where a is the
radius of the hypersphere containing the ki samples.
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Quick Aside: Data Structures

A number of metric data structures may be used
to accelerate NN classification, or similarity
comparison in general:

® k-d Trees (partitions features space)
® R-trees (partitions data set)
® M-trees (sample/distance-based indexing)

Ref: Foundations of Multidimensional and Metric Data
Structures by Hanan Samet (2006))
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