Neural Networks
(Overview)

Prof. Richard Zanibbi

Introduction

Inspired by Biology

But as used in pattern recognition research, have
little relation with real neural systems (studied in
neurology and neuroscience)

Kuncheva: the literature ‘on NNs is excessive and
continuously growing.

Early Work
McCullough and Pitts (1943)

Introduction, Continued

R‘

Neural Nets Encode a Function

Represents function f: R” =R where n is the dimensionality
of the input space, ¢ the output space

® C(Classification: map feature space to values for ¢ discriminant
functions: choose maximum discriminant value (most ‘activated’

output node)

® Regression: learn continuous outputs directly (e.g. learn to fit the sin

function - see Bishop text)
N

1 C
Training (for Classification) £= 52; (i) — Z(w:, U(z)))’

j=1
Minimize error on outputs (i.e. maximize function approximation) for a
training set, most often the squared error (above)

[-T £ 3

Introduction, Continued

Granular Representation

A set of interacting elements (‘neurons’ or nodes)
map input values to output values using structured
series of interactions

Properties

® |nstable: like decision trees, small changes in training
data can alter NN behavior significantly

® Also like decision trees, prone to overfitting:
validation set often used to stop training

® [Expressive: With proper design and training, can
approximate any function to a specified precision

o
75
—
-]
—

Expressive Power of NNs

'4
%

p—
~

D
—_

Using Squared Error for Learning Classification Functions

For infinite data, the discriminant functions learned by a
NN approach the true posterior probabilities classes (for
multi-layer perceptrons (MLP), and radial basis function
(RBF) networks):

lim g,(x) = P(w]0), x ER’

Note

This result applies to any classifier that can approximate
an arbitrary discriminant function with a specified
precision (not specific to NNs)

A Single Neuron (Node)

Let u = [u,..] € R be the input vector to the node and v € R be
its output. We call w = [wo,.. wq] € R a vector of synaptic weights. The
processing element implements the function

q
v=@@):; £=) wu, (2.79)
i=0
where ¢ : R — R is the activation function and & is the net sum.
w u0: 1 or -1 (bias)
UL g .
.H“H;’f H\‘ " veR
ue R e 2| O
5, / v (Y)
; e o~ _|:.:| :"
(! |
.l'j{l-./ff
g
R-T-T £,

Common Activation Functions

e The threshold function g . (n et su m)

if £>0,
otherwise.

O = {(1)

e The sigmoid function

HH = ¢ = HO[— HO)]

I +exp(—§)
e The identity function
HE = ¢ (used for input nodes)
= Threshold Bz , Sigmoid B(E) E Identity

2
l

1 e 'I e e

10

e
—{
5

n
p—
—e
[
—
—
=
|
—
|
—r
]
| -,
e}
P

T
ErTr D t b o E :
o

Bias: Offset/Translation for Activation Functions

The weight “—wy” 1s used as a bias, and the corresponding input value u is set
to 1. Equation (2.79) can be rewritten as

q
v=¢[{— (—wo)] = ¢|:Z wilj — (—Wo):| (2.83)
i=1

where { is now the weighted sum of the weighted inputs from 1 to g. Geometrically,
the equation

q
> wini — (—w) =0 (2.84)
i=1

defines a hyperplane in R?. A node with a threshold activation function (2.80)

responds with value +1 to all inputs [uy, ..., uq]T on the one side of the hyperplane,
and value O to all inputs on the other side.

The Perceptron (Rosenblatt, 1962)

q
v=dO; E=) way
i=0

Defines linear decision boundary o { 1, if £>0,
Where activation had value 0. ~1, otherwise.
Update Rule: W <«—[W —vnz] (2.86)

where v is the output of the perceptron for z; and 7 is a parameter specifying the
learning rate

Learning Algorithm:
® Set all input weights (W) randomly (e.g.in [0,1])
® Apply the weight update rule when a misclassification is made

® Pass over training data (Z), applying the update rule whenever
there is an error, until a pass is made where no errors occur.
One pass = one epoch

:Z\:"
—

_]
—
-

Properties of Perceptron Learning

>
7

|
.

—

Convergence and Zero Error!

If two classes are linearly separable in feature
space, always converges to a function producing
no error on the training set

Infinite Looping and No Guarantees!

If classes not linearly separable. If stopped early,
no guarantee that last function learned is the best
considered during training

Example: Perceptron Learning

=02 a n.e ad ns R 1 12

(b)

Fig. 2.16 (a) Uniformly distributed two-class data and the boundary found by the perceptron
training algorithm. (b) The “evolution” of the class boundary.

Multi-Layer Perceptron

g1(x) ga(x) () Correct Output:
—\ __________________ ~ 00,..., 1)

output layer

hidden lavers

mput laver
S I I ___1 (activation:
identity fn
a4 o LY y)
x £ k"

t\{*[A Fig. 2.17 A generic model of an MLP classifier.

® Hidden layers have the
same activation function
(threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

® | earning is through
backpropagation: error
metric used to update
input weights based on
observed activations

(outputs) -

y

Multi-Layer Perceptron

g1(x) ga(x) () Correct Output:
—\ __________________ ~ 00,..., 1)

output layer

hidden lavers

mput laver
A I . ___1 (activation:
identity fn
i] i 2 L 4)
x £ k"

t\{*[A Fig. 2.17 A generic model of an MLP classifier.

® Hidden layers have the
same activation function
(threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

® | earning is through
backpropagation: error
metric used to update
input weights based on
observed activations

(outputs) o

y

Multi-Layer Perceptron

g1(x) ga(x) () Correct Output:
—\ __________________ ~ 00,..., 1)

output layer

hidden lavers

mput laver
A I . ___1 (activation:
identity fn
i] i 2 L 4)
x £ k"

t\{*[A Fig. 2.17 A generic model of an MLP classifier.

® Hidden layers have the
same activation function
(threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

® | earning is through
backpropagation: error
metric used to update
input weights based on
observed activations

(outputs) g

y

Multi-Layer Perceptron

g1(x) ga(x) () Correct Output:
—\ __________________ ~ 00,..., 1)

output layer

hidden lavers

mput laver
A I . ___1 (activation:
identity fn
i] i 2 L 4)
x £ k"

t\{*[A Fig. 2.17 A generic model of an MLP classifier.

® Hidden layers have the
same activation function
(threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

® | earning is through
backpropagation: error
metric used to update
input weights based on
observed activations

(outputs) .

y

Multi-Layer Perceptron

Correct Output: ,
® Hidden layers have the
0,0,..., 1) S .
same activation function
output layer (threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

hidden lavers

® | earning is through

input layer backpropagation: error
(activation: metric used to update
identity fn) input weights based on
Ao] oL L . .
o observed activations
x € R
(outputs)

RIT’ Fig. 2.17 A generic model of an MLP classifier. y= , 16

Multi-Layer Perceptron

Correct Output: ,
® Hidden layers have the
0,0,..., 1) S .
same activation function
output layer (threshold or sigmoid)

® (lassification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

hidden lavers

® | earning is through

input layer backpropagation: error
(activation: metric used to update
identity fn) input weights based on
Ao] oL L . .
o observed activations
x € R
(outputs)

£ 7

RIT’ Fig. 2.17 A generic model of an MLP classifier. y

Multi-Layer Perceptron

RIT

output layer

hidden lavers

mput laver
(activation:
identity fn
£] i 2 L 4)
x € R"

Fig. 2.17 A generic model of an MLP classifier.

® Hidden layers have the

same activation function
(threshold or sigmoid)

Classification is feed-
forward: compute
activations one layer at
a time, input to ouput:
decide Ww; for max gi(X)

Learning is through
backpropagation: error
metric used to update
input weights based on
observed activations

(outputs) g

.

MLP Properties

|<
%

p—
~
a!

Approximating Classification Regions

MLP shown in previous slide with threshold nodes can
approximate any classification regions in R" to a specified
precision

Approximating Any Function

Later found that an MLP with one hidden layer and threshold
nodes can approximate any function with a specified precision

In Practice...

These results tell us what is possible, but not how to achieve it
(still uncertainties regarding appropriate network structure
and training algorithm)

output k

"y, ki
hidden j
ji
input i
.)C] xZ
Xy
z=-1
® 1
R,
z=+1 R,
1 .
R,
z=-1
o -1 [

2]

T
oy
LA

A2
LZAZAZ

Y vy

2

Y e L e
e
S S S
SBLTTE
v
et
LEZTIL
T RTITIIS
:'.’ S o e e

L
KXR TR
SRR |
LA TS LTH 7
L7 LZH AT
LRI
L8 S e e
oo
A

L7

LK 7
LB Z
'%#. 75

L7
22
2
L

N
p SN
LBIRLRLIER
'0.""4""5’ \\

=z
2

L7 RS ZAZS

RRLLLRILILL

L 7A 7

e sl

LR

0

L

LA
LK
R
L7

Xp X2

FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f(-). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley

& Sons, Inc.

NN configuration Type of region An example

(Threshold nodes)

Half space
bounded by
a hyperplane

B
Convex 4 ‘%M
N RO .:?':.
regions ﬁfﬁ
(open or closed) 2 Pl
i,
0
0 5
Any
regions

Fig. 2.18 Possible classification regions for an MLP with one, two, and three layers of threshold
nodes. (Note that the “NN configuration” column only indicates the number of hidden layers and
not the number of nodes needed to produce the regions in column “An example™.)

sample training patterns

&

Foaks

L
F

3@#
FET M

0

o
L

learned input-to-hidden weights

FIGURE 6.13. The top images represent patterns from a large training set used to train a
64-2-3 sigmoidal network for classifying three characters. The bottom figures show the
input-to-hidden weights, represented as patterns, at the two hidden units after training.
Note that these learned weights indeed describe feature groupings useful for the clas-
sification task. In large networks, such patterns of learned weights may be difficult to
interpret in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Backpropagation Update Rules

Modify Perceptron

Update weights using

Update Rule

) partial derivative of error for

node output w.r.t. net sum &, 2) output of node k
from the preceding layer, 3) 17 (eta, learning rate)

Output Layer (depth/level 0)

9, 9) dl. .h
Wix < Wi — 77@"1@

k=20,..., M, i=1,...,c

Hidden Layers (depth ‘h’)

h h W h—1
R-I-T IR n‘bk ;

Computing the Error

Derivative of Error at Output w.r.t w;

input value j

oF OE 0o oE
= § = U 4/(node output from

Bwj - 8§ 8Wj - 8§

previous layer)

Derivative of Error w.r.t. Output Net Sum

o
08i(X)
5 OE [OE logix)
AT FP e T

(chain rule)

= gi(x) — Z(l(x), w;)

0Pp(&7)
&7

— Z(I(x), w;)]

For Sigmoid Activation Function:

o

5

= [gi(X) — Z(X, w;)]

gi(x)[1 — g:(x)] y”

~
p—
P

— aglo

25

(2.91): Output Node Error |s°

(2.77) (Squared Error):

1 N ¢
E =23 {8i() — (o)Y

j=1 i=1

Stopping Criterion:
Error less than epsilon OR
Exceed max # epochs, T

Output/Hidden Activation:
Sigmoid function

**Online training
(vs. batch or
stochastic)

O
3¢y

=[g;(x) — Z(I(x), (Ui)]"gi(x)[l — gi(x)]

Backpropagation MLP training

1.

Choose an MLP structure: pick the number of hidden layers, the number
of nodes at each layer and the activation functions.

Initialize the training procedure: pick small random values for all
weights (including biases) of the NN. Pick the learning rate n > 0,
the maximal number of epochs T and the error goal € > 0.

. Set E = oo, the epoch counter ¢ = 1 and the object counter j = 1.

While (E > eand t < T) do
(a) Submit z; as the next training example.

(b) Calculate the output of every node of the NN with the current
weights (forward propagation).

(c) Calculate the error term 6 at each node at the output layer by (2.91).

(d) Calculate recursively all error terms at the nodes of the hidden
layers using (2.95) (backward propagation).

(e) For each hidden and each output node update the weights by

Whew = Wold — 7]61/!, (298)

using the respective 8 and u.
(f) Calculate E using the current weights and Eq. (2.77).

(g) Ifj = N (a whole pass through Z (epoch) is completed), then set t =
t+1andj=0.Else, setj=j+ 1.

. End % (While)

Input: (2,-1) (class 2) bias oup

neurons
vy = 0.8488 v, =0.9267] ‘
vi =1 vy =0.7738 vs =0.8235 vg = 0.9038 «;@g &
V7 = 1 Vg = 2 Vg = —1 - / _, "-"-_-;:"': — \
The target value (class w,) is [0, 1]. Using Eq. (2.91), we have R \/‘, “\\H// “'“-a.:j\r hidden
r:;:{:j—- /I'C.l'./&;xh - -é’-:'.r-fpt - ._____.:é-\fD lﬂ&rcr
61 = (0.8488 — 0) x 0.8488 x (1 —0.8488) = 0.1089 TN -ﬁ}{“:xff - A# 4
8 = (0.9267 — 1) x 0.9267 x (1 — 0.9267) = —0.0050 N N TN /
: : : .=t = S input
(sigmoid deriv.) @ i?;-f @ 13;m.
Propagating the error to the hidden layer as in Eq. (2.96), we calculate " ‘
04 = (61 X wy1 + 6 X wan) X vq X (1 —vy) xy T
= (0.1089 x 0.05 — 0.0050 x 0.57) x 0.7738 x (1 —0.7738)
~ 0.0005 (2.101)
Update Weights

In the same way we obtain 85 = 0.0104 and 8¢ = 0.0068. We can now calculate CI 3 7 b
he new values of all the weights through Eq. (2.98). For example, nodes 5, / are bias

nodes: always output |

Wi = W4y — N X 8y X vy

=0.57 — 0.1 x (—0.0050) x 0.7738 (2.102)
= 0.5704 (2.103) activation:
For input-to-hidden layer weights we use again Eq. (2.98); for example, inpu t:iden tit)’
W95 = W95 — 7] X 05 X Vg = Wo5 — 7 X 05 X X3 (2.104) hidden/output: Singid

=0.06 — 0.1 x 0.0104 x (—1) =0.0610 (2.105)

2:3:2 MLP (see previous slide)
Batch training (updates at end of epoch)

Max Epochs: 1000, n = 0.1, error goal: 0
Initial weights: random, in [0, 1]

Squared efror

&0 . .
40} .
II
20 '\..___h.__‘ ||I | | | N . | |
il U
wl | || JJ |
L Hﬂ“mﬁl "-L..-"Ll-.LIJJL 'ﬂalJ.l. e JJJJ.L.J.I.I NI ISR
E] 1 1
0 200 400 G00 800 1000
Epochs
Apparent error rate
0.5 L i .
0.4f : 1
0.3
0.2 lL
"_"_!h g
R W 8 B T N O ST SO ST
I:I y II'||I'] '.‘I“JII{:‘Hﬁrﬂr‘l"rllﬁll' I;.*IJ'.llll.'u'ljl'l'l'.'||IllJ||I|I.-Il|||_4lq_1l-'|lh|'||.lj,1 J'ngr'u" ..J".'.-JIW‘L.'“ n JJ.‘J..-.'..'I',!I'M
(0 200 400 a0 a0 1000
Epochs

Fig. 2.21 Squared error and the apparent error rate versus the number of epochs for the
backpropagation training of a 2:3: 2 MLP on the banana data.

-10

-5 0 5

Final train error: 4%
Final test error: 9%

Final Note

|<
%

p—
~

Backpropogation Algorithms

Are numerous: many designed for faster convergence,

increased stability, etc.
Other Network Types

Many, many variations: RBF, Graph Transformer
Networks (GTN), Convolutional Networks

® c.g LeNetb example (digit recognition): http://
yann.lecun.com/exdb/lenet/

]
I—

29

