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Using ROC for Feature Selection
Hypothesis Tests Examined (e.g. t-test):

Useful for discarding features

But does not tell us about overlap 
between classes for a feature!

At Left (a): Feature for two class prob.

a: P(error for ω1) right of threshold

1-β: P(correct for ω2) right of threshold

ROC:

Sweep the threshold over the feature 
value range, record a, 1-β
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ROC Cont’d

Metric for Class Discrimination by Feature

Area of the upper-left triangle in the ROC

• Complete overlap: 0  (a = 1 - β everywhere)

• Complete separation: 1/2  

In practice, can be estimated using a training sample, 
sweeping the threshold through the feature value range
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Measuring Class Separation Using 
Multiple Features

Applications

• Identify best feature or fixed-length feature 
vector

• Define criteria used in transforming original 
data to produce features that better separate 
classes 
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Divergence
Recall: Bayes Rule for 2 classes

Choose ω1 if 

The mean ratio of the class-conditional pdfs can be 
used to quantify discrimination of class 1 vs. class 2 
based on features (similar for class 2, D21):

Divergence is defined by:
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Divergence: Multiple Classes

Compute divergence for every pair of classes:

Then compute the average divergence:

Limitation:

Divergence directly related to Bayes Error for Gaussian (normal) 
distributions, but not more general distributions

• For normal distributions with equal covariance, divergence becomes 
the Mahalanobis distance between the mean vectors 6
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Chernoff Bound

Provides

An upper bound for error of a two-class 
Bayesian classifier:

using the inequality:
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Chernoff Bound, Continued

8B: Bhattacharyya distance



Bhattacharyya Distance

This is the optimal Chernoff bound for 
identical covariance matrices, Σi, Σj

• Bhattacharyya distance becomes proportional 
to Mahalanobis distance   
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Scatter Matrices

Class Separability Criteria so far...

Not easily computed, unless we assume 
Gaussian distributions

And so now...

We’ll look directly at the distribution of our 
samples in feature space
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Measuring Scatter

1. Within-class scatter matrix

Average feature variance per class

2. Between-class scatter matrix

Average variance of class means vs. global mean (   )

3. Mixture scatter matrix

Feature covariance with respect to global mean:
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Class Separability Criteria 
Using Scatter Matrices

Large when samples cluster tightly around their class 
means, and classes are well-separated

Top: sum of feature variances around the global mean

Bottom: measure of average feature variance across classes

Related criterion (invariant under linear transformations):

(Note: trace is the sum of diagonal elements in a matrix)
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Fisher’s Discriminant Ratio

For one dimensional, two class problems

Can use sample-based mean and variance 
estimates

For multi-class problems, we can use the 
average FDR value across all class pairs
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Feature Subset Selection

Problem:

Select k of m available features, with the goal 
of maximizing class separation

Approaches:

• Scalar feature selection: treat features 
individually (ignores feature correlations)

• Feature vector selection: consider feature sets 
(and feature correlations)
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Scalar Feature Selection
Procedure:

1. Compute class separability criterion for each feature 

• e.g. ROC, FDR, or divergence

• Average values needed in multi-class case, or can use minimum 
between-class criterion values (‘maxmin’ strategy)

2. Rank features in descending order of criterion values

3. Select the k highest ranking features 

Taking Correlation into account

Cross-correlation coefficients may be included in a 
weighted criterion  (see p. 283-284 of Theodoridis)
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Brute-Force Feature 
Vector Selection

‘Filter’ Approach

Find the optimal feature vector of length k 
by evaluating class separation criterion for all 
possible feature vectors

For m features, vectors of size k:

• e.g. m = 20, k = 5 : 15, 504 length 5 vectors

• worse if we want to try over different k 16


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m

k


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m!

k!(m− k)!

4



Brute Force, Part 2:
Wrapper Approach

Evaluate Features Using Classifiers

...not class separation criterions.  Again, 
simplest approach is brute-force.

Can be more expensive than ‘Filter’ approach 
(due to expense in training classifiers, e.g. a 
neural net, decision tree, or SVM)
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Suboptimal Search for 
Feature Vector of Size k

Backward Selection

Start with all features in a vector (m features)

Iteratively eliminate one feature, compute class 
separability criterion

Keep combination with the highest criterion value 

Repeat with chosen combination until we have a 
vector of size k

Number of Combinations Generated
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Suboptimal Search, 
Cont’d

Forward Search

1. Compute criterion value for each feature

2. Select feature with best value

3. Form all possible pairings of best vector with another unused feature

• Evaluate each using the criterion, select best vector

4. Repeat step 3 until we have a vector of size k

Combinations Generated:
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*less efficient than backward 
search for k close to m



Floating Search
(forward direction)

Heuristic search that alternates (‘floats’) 
between adding and removing features in order 
to improve the criterion value

Rough idea: as we add a feature (forward), check 
smaller feature sets to see if we do better with 
this feature replacing a previously selected 
feature (backward). Terminate when k features 
selected.

(see p. 287 for pseudo code)
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Optimal Approaches

If criterion is monotonic (non-decreasing as 
features are added), we have more efficient 
methods to find the optimal feature set of 
size k (vs. brute force)

Dynamic Programming

Branch-and-Bound
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