Clustering

DHS 10.6-10.7, 10.9-10.10, 10.4.3-10.4.4




Clustering

Definition

A form of unsupervised learning, where we identify
groups in feature space for an unlabeled sample set

® Define class regions in feature space using unlabeled
data

® Note: the classes identified are abstract, in the sense
that we obtain ‘cluster O’ ...‘cluster n’ as our classes
(e.g. clustering MNIST digits, we may not get |10
clusters)
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Applications

Clustering Applications Include:

® Data reduction: represent samples by their
associated cluster

® Hypothesis generation

® Discover possible patterns in the data: validate
on other data sets

® Hypothesis testing
® Test assumed patterns in data
® Prediction based on groups

® e.g.selecting medication for a patient using
clusters of previous patients and their reactions
to medication for a given disease




Kuncheva:
Supervised vs.
Unsupervised
Classification

2 FUNDAMENTALS OF PATTERN RECOGNITION

@® | rovien|  The User comes to us
with their problem

Feature nomination, data collection

Unsupervised Supervised

Selection of a clustering method Feature selection and extraction

Selection of a classifier model

1 Clustering the data

Training
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Result OK?

The User walkes away
with the solution!

Fig. 1.1 The pattern recognition cycle.




A Simple Example

Assume Class Distributions Known to be Normal

Can define clusters by mean and covariance matrix

However...

We may need more information to cluster well

® Many different distributions can share a mean
and covariance matrix

® ...number of clusters!?
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FIGURE 10.6. These four data sets have identical statistics up to second-order—that
is, the same mean p and covariance . In such cases it is important to include in the
model more parameters to represent the structure more completely. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.




Steps for Clustering

|. Feature Selection
® Ideal: small number of features with little redundancy
2. Similarity (or Proximity) Measure ,
Y ( ) Red: defining
® Measure of similarity or dissimilarity ‘cluster space’

3. Clustering Criterion

® Determine how distance patterns determine cluster likelihood (e.g.
preferring circular to elongated clusters)

4. Clustering Algorithm

® Search method used with the clustering criterion to identify clusters
5.Validation of Results

® Using appropriate tests (e.g. statistical)
6. Interpretation of Results

® Domain expert interprets clusters (clusters are subjective) 'S y
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Choosing a Similarity Measure

Most Common: Euclidean Distance

Roughly speaking, want distance between samples in a cluster
to be smaller than the distance between samples in different

clusters

® Example (next slide): define clusters by a maximum
distance do between a point and a point in a cluster

® Rescaling features can be useful (transform the space)

® Unfortunately, normalizing data (e.g. by setting
features to zero mean, unit variance) may eliminate
subclasses

® One might also choose to rotate axes so they
coincide with eigenvectors of the covariance
matrix (i.e. apply PCA)




FIGURE 10.7. The distance threshold affects the number and size of clusters in similarity based clustering
methods. For three different values of distance dj, lines are drawn between points closer than dy—the smaller
the value of dy, the smaller and more numerous the clusters. From: Richard O. Duda, Peter E. Hart, and David

G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 10.8. Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left; points in
one cluster are shown in red, while the others are shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (as shown at the right). Alternatively, if the vertical axis is shrunk by
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FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Other Similarity Measures

Minkowski Metric (Dissimilarity)

d 1/q
Change the exponent q: d(x,x') = (Z |2k — x?ﬁ)

k=1

® g = |:Manhattan (city-block) distance

® q = 2:Euclidean distance (only form invariant to
translation and rotation in feature space)

xTx/

Cosine Slmllarlty s(x,x') = [ |||

Characterizes similarity by the cosine of the angle
between two feature vectors (in [0, 1])

® Ratio of inner product to vector magnitude product

® Invariant to rotations and dilation (not translation) £ n




More on Cosine Similarity

xTx/

If features binary-valued: s(x.x)=

][]
® Inner product is sum of shared feature values

® Product of magnitudes is geometric mean of
number of attributes in the two vectors

Variations

Frequently used for Information Retrieval

T,/

. . . . X X
® Ratio of shared attributes (identical lengths): s(x,x’) = —
® TJanimoto distance: ratio of shared attributes to

attributes in x or X’ N xTx'
RI-T s(%,X) = 5, T —xTx £ 1




Cosine Similarity: Tag Sets for YouTube
Videos (Example by K. Kluever)

Let A and B be binary vectors of the same
length (represent all tags in A&B)

Tag Set | Occ. Vector

dog puppy funny cat

Ay A
Ry B
A-B
SIM(A, B) = cosf = TA[B]

RIT Here SIM(A, B) is 2/3. y

1 1 1 0
1 1 0 1

Ay N Ry

s =
VAt |/ Re




Additional Similarity Metrics

Theodoridis Text

Defines a large number of alternative
distance metrics, including:

® Hamming distance: number of locations where
two vectors (usually bit vectors) disagree

® Correlation coefficient

® Weighted distances...
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Criterion Functions for Clustering

Criterion Function

Quantifies ‘quality’ of a set of clusters

® C(Clustering task: partition data set D into c disjoint
sets D ... D¢

® Choose partition maximizing the criterion function
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Criterion: Sum of Squared Error

Je:z Z HX_:“Dz'

1=1x€eD;

2

Measures total squared ‘error’ incurred by choice of
cluster centers (cluster means)

‘Optimal’ Clustering
Minimizes this quantity
Issues

® Well suited when clusters compact and well-separated

® Different # points in each cluster can lead to large
clusters being split ‘unnaturally’ (next slide)

® Sensitive to outliers y




J, = small

FIGURE 10.10. When two natural groupings have very different numbers of points, the
clusters minimizing a sum-squared-error criterion J. of Eq. 54 may not reveal the true
underlying structure. Here the criterion is smaller for the two clusters at the bottom than
for the more natural clustering at the top. From: Richard O. Duda, Peter E. Hart, and

David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.,




Related Criteria: Min Variance
P 5= 22 Z x — x|

An Equivalent Formulation for SSE

S; : mean squared distance between points in cluster i
(variance)

® Alternative Criterions: use median, maximum, other
descriptive statistic on distance for S;

Variation: Using Similarity (e.g. Tanimoto)

s may be any similarity function (in this case, maximize)
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Criterion: Scatter Matrix-Based

trace

1=1x€eD;

Z Z HX_MHz

R-I-T

Minimize Trace of Sy (within-class)

Equivalent to SSE!

Recall that total scatter is the sum of within
and between-class scatter (Sm = Sw + Sb).
This means that by minimizing the trace of
Sw, we also maximize Sb (as Sm is fixed):

trace|Sy| =

ZmHm

tol |’




Scatter-Based Criterions, Cont’d

=150 = |3 3 (x — ) (x — )"

i=1 xeD;

Determinant Criterion

Roughly measures square of the scattering
volume; proportional to product of variances
in principal axes (minimize!)

® Minimum error partition will not change with
axis scaling, unlike SSE
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Scatter-Based: Invariant Criteria
Invariant Criteria (Eigenvalue-based)

Eigenvalues: measure ratio of between to within-
cluster scatter in direction of eigenvectors
(maximize!)

® Trace of a matrix is sum of eigenvalues (here d is
length of feature vector)

® FEigenvalues are invariant under non-singular linear
transformations (rotations translations, scaling, etc.)

trace|S 1Sb Z oy

d
1
1
RIT Jf = t’I“CLCe[Sm Sw] — Z T+ A, £, n

1=1




Clustering with a Criterion

Choosing Criterion

Creates a well-defined problem

® Define clusters so as to maximize the
criterion function

® A search problem

® Brute force solution: enumerate partitions
of the training set, select the partition with

maximum criterion value
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Comparison: Scatter-Based Criteria
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The raw data shown at the top does not exhibit any obvious clusters. The clusters found
by minimizing a criterion depends upon the criterion function as well as the assumed
number of clusters. The sum-of-squared-error criterion J, (Eq. 54), the determinant cri-
terion Jy (Eq. 68) and the more subtle trace criterion Jr (Eq. 70) were applied to the 20
points in the table with the assumption of ¢ = 2 and ¢ = 3 clusters. (Each point in the ta-
ble is shown, with bounding boxes defined by —1.8 < x; < 2.5 and —0.6 < x; < 1.9
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