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Neural Networks




Backpropagation
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Backpropogation

» Learning for neural networks
» Supervised learning

» Used in feed-forward networks




Pragmatics for Backpropogation
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Activation Function Properties

» Required Properties

» f(-) and f'(-) are continuous.
» f(-) is non-linear.

Activation Function
Properties

» Desired Properties
» f(-) saturates.
» f(-) is monotonic.
» The sigmoid has all of these properties.

> f(x) = 1+1efx




Scaling Input
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» Problem: With more than one metric, you have more
than one type of measurement. These measurements
need to interact such that no metric is more heavily
weighted than another

» Solution: Scale the inputs so that the neural network Scalinglinple
treats each feature with equal weight




Scaling Input—Standardizing
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» Shift the numbers so that the average over the training
set data is zero

Scaling Input

» Scale each feature so that the variance is the same in
each metric




Number of Hidden Units

» The number of hidden units determines the number of
weights

Number of Hidden

Units

» Weights are degrees of freedom




Choosing the Number of Hidden Units
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» Too few hidden units means a poor fit to the training
data, too many means overfitting

Number of Hidden

» The goal is to find a happy medium with low test error Units
» Rule of thumb: n/10




Learning Rate
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> Wpew = Wold — N0
» 7 is the learning rate.

» Learning rate can affect the quality of the final network Learning Rate




Optimal Learning Rate

Hu, Romanczyk, &
Wi

» The optimal learning rate could lead to the local
minimum in one learning step.
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Optimal Learning Rate
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FIGURE 6.16. Gradient descent in a one-dimensional quadratic criterion with different learning rates. If <
Nept, CONVergence is assured, but training can be needlessly slow. If 7 = g, a single learning step suffices to
find the error minimum. If gy < 7 < 27, the system will oscillate but nevertheless converge, but training is
needlessly slow. If > 214y, the system diverges.

Figure 6.16 from [Duda et al., 2001]

Learning Rate




Optimal Learning Rate
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Learning Rate

FIGURE 6.17. If the criterion function is quadratic (above), its derivative is linear (be-
low). The optimal learning rate g ensures that the weight value yielding minimum
error, w*, is found in a single learning step.

Figure 6.17 from [Duda et al., 2001]




Momentum
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Momentum changes the learning rule and could pull the
network out of plateaus.

w(m+1) = w(m)+ (1 — a)Awpp(m) + aAw(m — 1)
Awpp(m) = —nop

Aw(m) = w(m) — w(m—1)
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Momentum
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FIGURE 6.18. The incorporation of momentum into stochastic gradient descent by
Eq. 37 (red arrows) reduces the variation in overall gradient directions and speeds learm-

ing.

Figure 6.18 from [Duda et al., 2001]




Adding Noise
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» Add a different random noise to the data on each
training run.

» Noise has the effect of blurring the neural network.

» The trained network will be more general than one
trained without noise.

Adding Noise

» Noise addition can be used to generate more data.




Hints
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» Add extra outputs during learning to try to control the
evolution of the NN.

» Hints are not calculated during classification.

» Hints provide additional, but related information to help
the classification.







Stopped Training
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» Training on one data set may lead to over fitting
» The NN is being fit to the sample and not the
population
> Loss of generallity
» Having a second test set can be used to reduce over
fitting.
» Stop training when testing error begins to increase.
» Other stopping criteria:
» Stop training when training error is below a
predetermined threshold.
» The average training error stops decreasing.
» The change in average training error is small.

Stopped Training
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