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Abstract

Gait recognition is a relatively new area being studied as a possible
biometric. This paper presents a survey of some recent gait recognition
methods based on the silhouette images acquired from a sequence.
Individual methods are discussed and some of the comparable results
produced from these are discussed.

1 Introduction

A person’s gait is influenced by a variety of factors, including age, height,
and weight, just to name a few. In fact, gaits have been shown to be unique
enough for someone to recognize a friend by only looking at lights attached
to their joints as they walk [1]. Accordingly, gaits have been increasingly
studied as a way of uniquely identifying a person.

Two main groups of gait recognition approaches exist: those that employ
a model of the human body and those that rely on motion present in a
frame. Model-based approaches tend to be difficult to implement, as they
usually require some mapping from two to three dimensions. Motion-based
approaches often operate on the silhouettes of a subject, which can be easily
acquired through preprocessing methods.

In [2], motion-based recognition methods are further divided into two
categories: those that represent motion as a sequence of poses and those
that map the distribution of the motion through space and time. This paper
will review both of these types of motion-based recognition and compare
some of the results achieved.
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Figure 1: Examples of Silhouettes from the NLPR Database

2 Related Methods

Model-based approaches generally attempt to fit the input to some model
of the human body. These models usually include locations and limitations
of the body segments and joints. One such approach observes the rotation
angle of the hip across time, as this is a roughly periodic feature in gait [3].
Another method first segments the person into body parts and then models
hip rotation and gait period [4].

Model-based approaches have some advantages over those that are motion-
based. As many are based on silhouette images, occlusion and segmentation
errors can both have a damaging impact on recognition rates. Shadows are
also a frequent problem, as they can be detected as motion and tend to be
connected to the human. However, the problem of locating and segmenting
body parts in a two-dimensional image can be difficult and computationally
expensive, while silhouettes are relatively simple to obtain.

3 Preprocessing

Many silhouette-based recognition methods have been built around the as-
sumption of a fixed camera observing a mostly static scene. This enables
silhouettes to be obtained through simple background modeling and sub-
traction methods.

Several methods of background segmentation are used for gait recogni-
tion. One of the simplest methods described in [5] first calculates the mean
and covariance values for each pixel across an entire sequence. Mahalanobis
distance is then used to determine which pixels in each frame are distant
enough to be considered foreground. Another approach presented in [6] and
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utilized in [7] is the Least Median of Squares method. In this, if I is a
sequence of N frames, the background is computed with

bxy = min
p

medt(I
t
xy − p)2 (1)

where t is the index of the frame and p is the background brightness
value for that particular pixel. Foreground pixels can then be determined by
thresholding the difference between the frame and the background measure.

4 Spatiotemporal Approaches

Spatiotemporal gait recognition methods are those that observe the distri-
bution across the XY and time dimensions. Commonly this will create large
feature spaces that need to be mapped to lower-dimensionality ones for use
in training and classification.

4.1 Baseline Algorithm

A baseline algorithm is proposed in [5] for the sake of measuring significant
contributions to the problem of gait recognition. A dataset was also defined
that consists of video sequences of 74 subjects walking outside under vary-
ing parameters, including different shoe types, surfaces, and camera angles.
As these parameters are varied either individually or together, the baseline
algorithm demonstrated a decreasing level of recognition.

The recognition algorithm in [5] is quite simple yet effective. For each
sequence, foreground pixels are segmented as described in Section 3. After
smaller regions are discarded, a bounding box is drawn around the remaining
foreground silhouette. This resulting box is then scaled to a common size.
Classification of gait sequences is based on a similarity measure between the
training sequences, or the “gallery,” and the test sequences, the “probe.”
The similarity between two sequences is defined as the median value of the
maximum correlations between the gallery sequence and each subsequence
of the probe. This similarity measure is defined as

Sim(SP , SG) = Medk(max
l

Corr(SPk, SG)(l)) (2)

where Corr(l) is simply the sum of the frame similarity measures between
each frame of the probe subsequence Pk and a gallery subsequence SG starting
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at frame l. This frame similarity measure is just the ratio of the number of
pixels that the two frames have in common to the number of pixels they have
combined.

Some interesting experiments were performed with this baseline algo-
rithm. By slowly removing parts of the silhouettes from both top to bottom
and bottom to top, it was determined that the area from approximately the
knees downward is responsible for almost all of the successful recognition rate
achieved by [8], an optimized version of [5] that performs noticeably better
with variations in both surface and shoe type and slightly better in most
other variations.

4.2 PCA

Due to the high-dimensionality of the feature space generated by many of
these methods, principal component analysis is frequently used to determine
where the primary variation is in the feature space and possibly eliminate
some features that do not produce significant variation. After these spaces
have been mapped to an eigenspace, classifiers such as k-nearest neighbor
will be much more computationally tractable.

4.2.1 Distance Signals

One spatiotemporal approach presented in [7] bases its recognition on the
distance between each silhouette boundary pixel and the centroid of the per-
son blob. Looking at the outline of a silhouette allows the system to better
respond to noisy images. A signal is produced by starting at the topmost
point on the contour directly above the centroid and moving counterclock-
wise, calculating the distance from each contour point to the centroid. The
signals for each sequence are then normalized with respect to length

Si(j) = Di

([
j ∗ND

NS

])
(3)

and magnitude

Si =
Si

maxSi

(4)

where Di is the ith signal in the sequence, Si is the normalized signal, and
NDi

and NSi
are the number of points in each. This effectively represents
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Figure 2: Normalized distance signal (b) for the silhouette (a)

each gait sequence as a set of normalized 1-dimensional signals, such as the
one seen in Figure 2.

The training phase of this algorithm determines the eigenvalues and
eigenvectors across the set of training sequences. In the experiments, this
becomes a 15-dimensional eigenspace into which all training sequences are
first mapped. A similarity measure, either normalized Euclidean distance or
spatial-temporal correlation, is then used with 1-nearest neighbor to classify
the test sequence.

Normalized Euclidean distance is simply the norm of the difference be-
tween the average projections for the sequence. This can be written as

d2 =

∣∣∣∣∣∣∣∣ C1

||C1||
− C2

||C2||

∣∣∣∣∣∣∣∣2 (5)

Spatial-temporal correlation, or STC, is a distance measure that accounts
for different temporal alignments between sequences. This measure is defined
by

d2 = min
ab

T∑
t=1

||P1(t)− P
′

2(at + b)||2 (6)

in which P1(t) and P2(t) are the eigenspace projections for each sequence,
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Figure 3: Self similarity plots (b) for the sequences shown in (a).

and P
′
2(at+b) is a temporal transformation of P2. It seems that this distance

measure would produce better identification results, but STC performed
worse than the normalized Euclidean difference in each of the experiments.

4.2.2 EigenGait

Another spatiotemporal method is described in [2] and [9] in which a plot of
image self-similarity is used to classify sequences. For each frame, a bounding
box is drawn around the person. Image self-similarity between two frames
from the same sequence is defined as the sum of all the pixels in the difference
image of the two frames. A self-similarity plot can therefore be constructed
by plotting this value for all combinations of sequence frames. This plot can
be seen to contain information about the period and magnitude of a person’s
gait. Two of these plots can be seen in Figure 3. The main diagonal will
always be darkest, but other dark diagonals can also be seen where the pose
is either the same or opposite.

The self-similarity plot is used as an input to the classification system.
The plots need to be normalized with respect to phase, so that cycles will
start at approximately the same location; and frequency, because the same
person may walk at a different pace between two iterations of recording.
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4.2.3 Hough Transform

A third method that employs PCA to reduce the feature space is described
in [10]. The Hough transform is employed, which is a method of locating
certain features through voting. For each sequence, the period of the gait
cycle is determined in order to acquire a single cycle. The Hough transform is
then computed for the edge images of each of these silhouettes, as indicated
in Figure 4. These template images essentially contain information about
where straight lines exist in the sequence of silhouettes. PCA is then used
to decrease the amount of features, as the templates are still the same size
as the silhouettes.

Figure 4: Hough transforms for a sequence of silhouettes and the template
computed for the entire sequence.

4.3 Other Methods

Some approaches attempt to use distinct body parts as a method of classi-
fying people by gait. These are the closest to model-based approaches, yet
they take a more simplistic view of the construction of a human being. For
example, [11] breaks each silhouette into seven regions based on location with
respect to the centroid, specifically the head, front and back of torso, and
thighs and feet for each leg.

To generate features out of this division, an ellipse is fit to each of the
segmented parts and the centroid, aspect ratio, and orientation of the ellipse
is calculated. Across the whole sequence, the mean and standard deviation
of each of these features and the mean of the height of the silhouette is
determined. Another vector containing magnitude and phase information
with respect to a single step is also calculated using a Fourier transform whose
input is the previous feature vector. This produces two different feature
vectors for each sequence that can be used for classification.
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Since this produces a large feature vector, the entirety of which may not
be necessary for good classification, a method known as analysis of vari-
ance, or ANOVA, is used to determine features that do not discriminate well
between classes. This method produces a value known as the p-value that
determines the probability that the variation occurs as a result of chance.
The features are ranked using this value to determine those with the most
actual variation. The classifier used is a simple 1-nearest neighbor method,
using Mahalanobis distance between the pruned input and feature vectors to
make the classification.

5 Discrete Approaches

In contrast to the spatiotemporal methods described above, discrete ap-
proaches aim to represent human gait with by considering variations over
time with respect to a set of static configurations of the body [7].

5.1 PCA

Similar to the spatiotemporal approaches, many discrete approaches need
to map a large feature space to a smaller one for classification purposes. A
method is proposed in [12] that uses optical flow templates as a feature for
classification. Each sequence of templates is first collapsed to an eigenspace
and then to a smaller space with canonical space transformation. Recognition
in this particular method is done by first projecting the input sequence into
the canonical space as for training and then finding its nearest neighbor in
the space.

5.2 Hidden Markov Models

Some other discrete methods aim to represent gait cycles with a hidden
Markov model. These are systems in which the state of the system is not
actually observable, but each state will generate output based on probability.

One such system described in [13] attempts to describe each person’s gait
in five separate stances with a hidden Markov model. For such a system,
silhouettes are compacted to width vectors containing the difference between
the right and leftmost pixels across the height of the person. The five stances
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are determined by applying k-means with k = 5 to the subject’s width vec-
tors. The width vectors are then encoded with respect to the stances using

d2 =
∣∣∣∣OW j(k)− Sj

l

∣∣∣∣ (7)

where OW j(k) is the width vector for the kth frame of the jth person
and Sj

l is the width vector for the lth stance of the jth person.
Another method presented in [14] uses Hu image moments as an input

to the hidden Markov model. These are moments are defined in [15] that
do not change with scale or rotation of the image. In this algorithm, the
rough symmetry of a gait cycle is exploited to determine how many frames
are in the cycle, and therefore how many states are in the model. An HMM
is constructed and trained on two sequences for each subject. Classification
is then defined as

M = arg max
j=1,2,...,C

P (Mj|S) (8)

where S is the vector quantization of the feature vectors obtained through
the Hu moments and C is the number of HMMs. This returns the HMM that
is most likely to have produced the particular sequence S.

A third more recent approach is demonstrated in [16] that aims to elim-
inate some of the issues with broken or occluded silhouettes, using a frame
difference energy image. The silhouette images in a sequence are first clus-
tered and then averaged to obtain a gait energy image. These energy images
are then cleared of noise by removing any pixels that fall below a certain
threshold. A separate set of difference images are calculated by finding the
difference between each silhouette and the one before it. The frame differ-
ence energy image is then the sum of each distance image with its respective
denoised image. An example of this is demonstrated in Figure 5.

The frieze features of the FDEIs are used as inputs to the HMM. These
features are simply

F (y, t) =
∑
x

B(x, y, t) (9)

where B is the silhouette image and t is the time. The frieze feature
vectors are then clustered and the center of each cluster is calculated as an
exemplar. The HMM contains one state for each cluster, and each state
transitions to either the next state or the same state on a 50/50 chance.
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Figure 5: Construction of the FDEI. (a) and (b) are two sequential silhouette
images, (c) is the difference image between (a) and (b), (d) is the gait energy
image, (e) is the denoised image, and (f) is the constructed frame difference
energy image

The frieze features of the FDEI are shown to perform better than the frieze
features of the initial silhouette images.

6 Published Results

Comparing results between different methods of gait recognition is currently
difficult, as there are no major standard databases for testing. However,
some approaches have started to utilize the data set from [5] to compare the
performance of their algorithm. Also, [7] implemented some similar algo-
rithms and compared their results on the lateral view NLPR database they
developed, which contains four sequences for each of twenty subjects. These
results are indicated in Table 1. The results from [10] are appended to this
table, although no data is available on computational time.

The baseline algorithm developed in [5] showed the difficulty of varying
the different conditions (surface, shoe type, view). Experiments in which
the view, shoe type, or both the shoe type and angle of view were changed
between the training and testing phases boasted significant identification
rates. Varying other parameters severely decreased the effectiveness of the
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Table 1: Comparison of Results on NLPR Database (0◦) [7]

Methods Top 1 (%) Top 5 (%) Top 10 (%) Computational cost (min/seq)
BenAbdelkader 2001 [2] 72.50 88.75 96.25 Medium (8.446)

Collins 2002 [17] 71.25 78.75 87.50 High (17.807)
Lee 2002 [11] 87.50 98.75 100 Low (2.2365)

Phillips 2002 [5] 78.75 91.25 98.75 Highest (200)
Wang 2003 (no validation) [7] 75.00 97.50 100

Lowest (2.054)
Wang 2003 (w/ validation) [7] 82.50 100 100

Liu 2009 [10] 97.5 100 100 no data

identifier.
Running the challenge experiments from [5] on the method in [7] pro-

duced roughly comparable results, although the latter enjoys a much smaller
computational cost. Similarly, the two methods had about the same level of
performance on the NLPR database introduced by [7]. Identification rates
in which the correct choice is in the top 1, 5, and 10 from those selected are
shown in Table 1 for some of the algorithms discussed earlier in this paper.

7 Discussion of Results

Many of these methods are limited in overall effectiveness. For instance,
methods like that proposed in [11] currently only work on sequences of peo-
ple walking parallel to the viewing plane. For all other methods, varying
the viewing angle will almost certainly degrade the results achieved. All
silhouette-based methods can be adversely affected by artifacts in the gener-
ation of the actual silhouette, whether natural in the form of bulky clothing
or artificial through background modeling problems. Also, current methods
are reliant upon a stationary camera over a mostly invariant scene.

On a single angle in the NLPR database, the methods in [11], [7], and [10]
exhibited the best performance. Of note, due to the significantly larger size
of the feature space in [10], computational time is likely much higher than in
the other two methods. In the experiments defined in [5], the method in [7]
generally performed slightly worse than did the baseline algorithm. It can
be seen in this that performance of these algorithms depends heavily on the
construction of the dataset.
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Most of the gait databases currently in use do not deal with occlusion.
However, background segmentation errors are quite frequent. The frame
difference energy image introduced in [16] seems to compensate for some of
these issues and would presumably improve upon other methods that operate
off of the raw silhouettes.

8 Conclusion

As interest in person identification increases, unique and efficient methods
are constantly being developed. Gait recognition is particularly interesting
because of the possibility of recognizing a person from a significant distance.
This is a relatively new area of research, but a wide variety of promising
methods are demonstrated in this paper as well as with model-based ap-
proaches. While not currently effective enough to be used as a sole basis for
identification, many of these methods could certainly be used for verification
of existing results.
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