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ABSTRACT

Mathematical information is essential for technical work,
but its creation, interpretation, and search are challenging.
To help address these challenges, researchers have devel-
oped multimodal search engines and mathematical question
answering systems. This monograph begins with a simple
framework characterizing the information tasks that people
and systems perform as we work to answer math-related
questions. The framework is used to organize and relate the
other core topics of the monograph, including interactions
between people and systems, representing math formulas in
sources, and evaluation. We close by addressing some key
questions and presenting directions for future work. This
monograph is intended for students, instructors, and re-
searchers interested in systems that help us find and use
mathematical information.
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Preface

This monograph provides an introduction to the foundations and current
developments in mathematical information retrieval research, or math
IR. In this area we focus on systems designed to assist with finding,
collecting, and using mathematical information. With the advent of
Large Language Models (LLMs), mathematical question answering is of
particularly keen interest at the moment. Systems that combine LLMs
with logic-based systems have been making news by solving problems
from the International Mathematical Olympiad, for example.

The authors have spent more than a decade working on systems and
interfaces for math-aware search engines in web pages, PDF documents,
and even videos. We have more recently worked with interactive con-
versational systems for math IR, and looked into applications of LLMs.
In this monograph we try to summarize what we have learned about
systems for searching existing sources, and briefly introduce emerging
math question answering systems that automatically generate responses
based on usage patterns for text and formulas.

Our intended audience includes students, instructors, and researchers
of information science, computer science, and mathematics.1 Because
the goal of this series is to introduce a topic from its fundamentals and
then build up to the state-of-the-art, we needed to prioritize making

1With this said, we have often been ‘unintended’ readers of monographs, and
warmly welcome anyone with even the slightest interest in what we have to say here.
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the presentation as clear and concrete as possible. This means that we
also had to make difficult decisions about what material to include. We
have focused on covering what we understand to be core topics and
concerns, rather than provide an exhaustive survey of techniques. For
those interested in learning more than we could cover here, we refer
you to other math IR surveys that are available (Zanibbi and Blostein,
2012; Guidi and Sacerdoti Coen, 2016; Dadure et al., 2024).

Our approach in this work is searcher-centered, i.e., focused on
models and systems used directly by people. We acknowledge that there
are vast bodies of literature concerned with searching and discovering
mathematical information with little or no human interaction. Important
examples include automated theorem proving, one of the oldest and
most influential corners of artificial intelligence research, and work with
mathematical knowledge databases in the Mathematical Knowledge
Management community (e.g., at the CICM2 conferences), from which
much of the early influential work in math IR also originates from. In
Appendix B we present related work from the theorem proving space,
but this is only a brief overview, and just the tip of the iceberg.

Structured representations for formulas and computations precede
the electronic computer. The tree-based representations for formula
structure presented in Section 2 were designed to be simple and capture
key structural properties, i.e., writing lines of symbols for formula
appearance, and operation hierarchies for mathematical expressions
represented by formulas. However, we make no assertion of their novelty;
many analagous representations have been used in papers and systems.
We’ve found that Symbol Layout Trees (SLTs) and Operator Trees
(OPTs) generalize the graph types used for recognition and retrieval of
formulas well.

We close here with a brief summary of the contents of this monograph.
The sections of the monograph are summarized visually in Figure 1,
and in more detail below.

Section 1 introduces math IR, and presents a framework that unifies
information seeking activities performed by people and systems in
(1) the real world, with (2) ‘traditional’ retrieval systems, and (3)

2https://cicm-conference.org/cicm.php

https://cicm-conference.org/cicm.php
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Figure 1: Visual summary of this monograph’s contents

question answering systems. The framework is organized around
information needs, sources, and tasks, with an informal ‘source
jar’ model for human information seeking, and a structured task
graph for systems. The systems-oriented model is used to organize
material in Sections 2–6.

Section 2 considers the types of mathematical information present
(and missing) in sources, and provides an overview of formula
representations. The larger focus is annotating sources with addi-
tional information (e.g., formula representations) and representing
text and formulas in indexes for ‘sparse’ (i.e., discrete pattern-
based lookup) and ‘dense’ (i.e., continuous vector space-based
lookup) retrieval.

Section 3 presents the math IR tasks addressed in Sections 4–6, along
with procedures for creating test collections for evaluation, and
evaluation metrics used in benchmarks. These are presented to-
gether to emphasize similarities and differences between retrieval
and question answering tasks.

Sections 4–6 present past and current systems for formula search, text
+ formula search (‘math-aware’ search), and question answering.
These systems depend upon indexing and evaluation techniques
covered in Sections 2 and 3. Each section begins with a summary
of test collections for evaluation, followed by a presentation and
comparison of methods.
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Section 7 provides a closing summary, a discussion of what math IR
cannot provide, and directions for future work organized around
the information task framework from Section 1.

Richard Zanibbi, Rochester, NY, USA
Behrooz Mansouri, Portland, ME, USA
Anurag Agarwal, Rochester, NY, USA

December 2024



1
Sources and Information Tasks

We often pause to search when something that we read, watch, or hear
prompts questions that we want answers to. We then go about finding
answers using additional sources of information: some already exist,
some are created in response to requests (e.g., emails or search results),
and some are created to record and organize what we find.

In this way, information sources are the backbone of our information
ecosystems. The sources available to us place a hard limit upon which
questions we can answer. In addition to the information content in
a source, its terminology, notation, writing style, and other factors
determine the amount of information one can recover from a source,
and how accurately and completely. This is a key reason why math
instructors that communicate well are so highly regarded: they help us
more easily understand topics by how they speak, write, and present
exercises. Through course materials, lectures, and conversations, these
instructors provide multiple sources tailored to their students’ level of
understanding and communication style.

Outside the classroom, we still often find ourselves in need of math-
ematical information. It might be as simple as finding a formula to
convert temperatures in Fahrenheit to Celsius, or the formula asso-

6



1.1. When and Where Do We Search? 7

ciated with a name (e.g., inverse document frequency). Or the goal
may be more complex, such as understanding a proof of the sensitivity
conjecture.

As we look for answers, we will in some way annotate and organize
the sources we find in order to identify and apply pertinent information,
e.g., to find other sources, choose different search terms, execute sug-
gested exercises, and make notes about partial answers to our questions.
The effort needed for these tasks depends largely on the content and
presentation in the sources that we access. To save time, we often create
additional sources of our own (e.g., bookmarking a web page, placing
notes in a file, or highlighting a PDF document).

In this work, when we speak about sources, we are usually referring
to individual documents, recordings (e.g., videos) or other artifacts
that contain information. Libraries and other people are of course also
information sources, in the sense that they can provide information, but
here we use ‘sources’ to refer to records of specific information.

To help organize our study of mathematical information retrieval,
in this section we introduce a framework for information tasks based
on sources. The framework is built upon two main ideas:

1. Search begins, progresses, and ends with sources.
2. Tasks other than search are often needed to find information.

The key components of the framework are:

• information needs that individuals have,
• sources of information that we search, consult, and create,
• information tasks performed to address information needs, and
• their roles in search algorithms and user-interfaces.

In the next section, we consider how these components interact when
we have a mathematical question that we wish to answer.

1.1 When and Where Do We Search?

Some short answers to this question are (1) when we have a question,
and (2) wherever is easiest. While not very satisfying, these answers are



8 Sources and Information Tasks

basically correct. Search is generally performed as part of some larger
information task, and not for its own sake.1 This motivates finding
quick paths to answers.

However, technical subjects such as mathematics can be complex.
Finding and understanding information on math may require multiple
activities, such as web search, reading sources (e.g., Wikipedia pages
and textbooks), taking notes, talking to instructors or colleagues, and
doing exercises. As a result, when retrieving technical material on math
and other specialized topics (e.g., law, chemistry, music history), it is
helpful to understand how search interacts with other information tasks.

To illustrate, consider the more general problem of sensemaking,
which learning about detailed mathematical topics is closely related to.2
In sensemaking, we construct a conceptual understanding of a topic with
many sources, usually along with communicating this understanding.
Common examples include writing a school term paper on an unfamiliar
topic (e.g., applications of category theory), or summarizing a complex
historical event from multiple news reports.

Sensemaking tasks are challenging because information must be
found in multiple sources, but also because this information must be
analyzed, compared, and integrated. These thinking activities often
require most of the effort for sensemaking. To manage these thinking
tasks, we record plans, notes, and outlines to organize our work. These
working documents may be checked repeatedly as we work, and as we
write our final summary. They are themselves important information
sources that provide the scaffolding needed to focus and ultimately
complete work on a sensemaking task.

To further illustrate information tasks that complement search,
imagine taking handwritten notes on eigenvectors as described in a
linear algebra textbook. The notes allow us to annotate this source with
our own observations, and record them for reference at a later time.
The analysis and insights in the notes come from applying information
that we know and find. These notes communicate a new information
source to a specialized audience: ourselves.

1A fact that is both important and humbling for IR researchers.
2See Hearst (2009) for an overview of early research on sensemaking.
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For our notes to be useful, we organize them. Perhaps this is a purple
sticky note that we attach to a monitor to check later in the evening. Or,
perhaps we use a paper notebook with separate sections for different
subjects, along with other organizational devices (e.g., sticky notes
acting as bookmarks). We might instead be using a tablet computer,
which also provides handwriting recognition to convert the notes to
computer-searchable data (e.g., using Ctrl-f).

The information tasks above are distinct from a basic search task
where we submit a query, post a question, or send an email to obtain
new information sources. However, it turns out that search engines
implement variations of the same information tasks described above:
they need to index, communicate, annotate, and apply information in
sources to be effective. For example, we organize sources when we arrange
sticky notes by topic and color on a wall, or construct an inverted index
mapping words or formulas to their document locations: these are both
forms of indexing. As another example, search engines produce Search
Engine Result Pages (SERPs) summarizing documents matching a query,
and question answering systems or AI ‘bots’ produce answers. These
retrieval system outputs and our notes are communications creating
new information sources.

Making notes on a passage requires us to apply information to create
an annotation: additional information associated with the passage. In
turn, if those notes were handwritten on a tablet computer, a system
converting these to text and LATEX for math applies information cap-
tured in an algorithm, annotating the notes themselves. We end up
with a hierarchy of annotations: the notes annotate a passage, while a
recognition algorithm annotates the notes.

In our framework we will distinguish different source types, based
largely on what information tasks they are primarily used for. More
specifically, we distinguish:

1. available sources on a topic including search queries and results,
2. information added to sources (annotation), and
3. structures and organizations created for search (indexing).

Getting back to our motivating question, when we have identified a
mathematical information need, we generally start with questions, and
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hope to end with one or more information sources that we feel address or
ideally answer those questions (i.e., relevant sources for the information
need). Where we search is motivated by the types of sources we expect
to find from places online and/or the physical world (e.g., conversations
and post-its). Unless we are casually browsing resources on a topic, the
places and order in which these sources are found will generally reflect
attempts to reduce our time and effort.3 Relevant sources are often of
different types: perhaps a passage in a web page along with a SERP
page, an answer from an online AI system, an email from a friend, and
a green sticky note on your monitor.

From this perspective, math-aware search engines and question
answering systems are important tools, but only one among many
resources for finding math information, and only a small part of what
happens when we search for mathematical information.

1.2 Information Task Framework

While we focus in this monograph on information retrieval using com-
puters, we wish to address sources in their broadest sense here. Not
all sources are text documents, and not all sources are recorded in
documents. Consider an informal conversation about Bayesian decision
theory in the hallway, or observing that there are no clouds in the sky:
often, your only record of important information is your own memory.

In addition to textbooks, technical papers, and web pages, in recent
years the types of resources used to locate mathematical information has
grown to include substantial amounts of video (Davila et al., 2021) and
audio, e.g., for course lectures, tutorials, and technical talks. Community
Question Answering sites and direct question answering is provided
by resources such as Math Stack Exchange,4 WolframAlpha, and large
language models such as the Generative Pre-trained Transformer (GPT).

It is worth noting that when we have found or produced information
we want to share or reuse, we usually produce a source of information
ourselves. For example, when we have an answer to a math homework

3Information foraging theory (Pirolli and Card, 1999) suggests we evolved to
gather and consume information similar to food, governed by cost-benefit analyses.

4https://math.stackexchange.com

https://math.stackexchange.com
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question, we create a physical or digital document, so that this can be
checked by ourselves and graded by our instructor. If we found a helpful
video while doing the homework, we might share it in a text message,
which is itself a form of ‘micro-source.’

Differences in Information Sources. Especially when we include in-
formation obtained directly from our environment along with modern
computing and communication devices, information sources may come
in many forms. Sources vary in the dimensions listed below, among
others.

• immediacy, e.g., having a conversation vs. reading a transcription
• authorship, e.g., human, machine generated, environment
• interactivity, e.g., a human/chatbot conversation vs. a document
• audience, e.g., grade school students vs. math professors
• modality, e.g., text, video, audio, or a web page combining these
• purpose, e.g., textbook, search results, or a search index
• structure, e.g., free text in a sticky note, vs. a book with chapters
• length
• formality, e.g., proof vs. text message
• style, e.g., how concepts and examples are communicated
• correctness, e.g., correct vs. incorrect definition or proof
• completeness, e.g., partial vs. full search index
• type of information, e.g., technical, notes, communications

For the immediacy of a source, we are referring to whether the source
comes directly from observing a person’s environment (e.g., through
conversation, experimentation, travel, etc.) or is recorded, as in a doc-
ument or audiovisual recording. Particularly with the advent of large
language models, authorship and correctness are important concerns.
In many cases LLMs and other sources may appear credible but are
incorrect. Knowing how a source is created can help us determine how
trusting we should be of it when we are uncertain about validity (e.g.,
from the perceived expertise of an author or system).
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The intended audience and style of a source are also critical concerns.
They determine the prerequisite knowledge needed to decide whether a
source is relevant and to interpret and use information in the source.

Information task types. The primary task types we will use for people
and systems come from common descriptions of sensemaking and simpler
information tasks: retrieving, analyzing, and synthesizing. For this
framework, these tasks are considered at the source level. For
example, analyzing a source refers to analysis that produces additional
recorded information for a source (e.g., in a note) rather than reading
and interpreting a source without producing an observable artifact.

We subdivide each of these into two subtasks based on how sources
are created and used, producing six tasks in total, as shown in Fig-
ure 1.1. The apply task is critical, and used for all other tasks (e.g.,
creating queries, consulting or creating information sources, or gener-
ating annotations and/or indexes). It is distinct because people often
apply information without producing observable sources. For example,
recognizing what a variable represents does not involve creating an an-
notation, index, or source outside of our own minds. The apply task also
identifies an important commonality between thought and computation
(e.g., algorithms): both apply information but using differing levels of
formality, flexibility, and automation.

Not all information needs require queries. If we have a helpful
document describing the inverse document frequency on our laptop,
we may simply consult it to review previously highlighted passages.
This locating of items in an available source or across available sources
through references and links is known as navigation, which is distinct
from submitting a query to a system or person to find new sources. As
another example of using navigation to satisfy an information need, in
some case we may simply use the contents of available sources directly
(e.g., copying-and-pasting into an online form).

The process of analyzing a source and recording a map for use in
retrieval is known as indexing. Consider Figure 1.2, where a book index
provides a map for the book, so that a reader can quickly navigate to
parts of the book discussing ‘Terms,’ for example. Contrast this subject
index with the index used in a traditional term-based search engine,
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Retrieve Information

R1 Query to request sources of information
R2 Consult and interpret available sources, examining and

navigating within and across sources

Analyze Information

A1 Annotate sources with additional information, e.g., notes, add
formula locations

A2 Index sources by organizing them for retrieval

Synthesize Information

S1 Apply available information that we know, have in available
sources, or is encoded in algorithms, etc.

S2 Communicate information by creating new sources

Figure 1.1: Information task taxonomy.Book Index Entry
From Manning et al., Modern Information Retrieval (2008)

**embedding techniques approximate some of these conceptual organizational

tools (albeit without explicit distinction - ?)

⋮ 
TermID, 62 
Term normalization, 30 
Term-partitioned index, 70  
Terms. See also Queries 
    BIM ranking function, deriving, 
        207 
    defined, 3, 21  
    function notations, xi  
    partitioning, 416 
    statistical properties of, 82  
    tree-structured dependencies, 213      
    vectors, weighting and, 113 
Term weighting. See Weighting  
Test data, 237 
⋮ 

Figure 1.2: Excerpt from the index to “Introduction to Information Retrieval” by
Manning et al. (2008).
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which provide a much simpler map known as a concordance recording
where specific terms appear in documents (Duncan, 2021). While these
different indices are both used for retrieval, they differ in their scales
(one document vs. a collection) and intended audiences (human reader
vs. search algorithm). Other forms of indexing are less formal, such as
collecting and organizing notes on different sticky notes for easier use.

As discussed earlier, we distinguish tasks for analyzing sources in
terms of organizing them for use and retrieval (indexing), and adding
information to sources (annotation). Annotations are often used in
indexing sources, such as adding formula locations for PDF documents.

Source Jar Framework. To put sources and the tasks used to create
them in a more intuitive relationship, Figure 1.3 visualizes our task
framework as a jar of sources with a lid. The jar contains immediately
available sources as marbles in the jar. Each marble has an identifying
color and shape. The source marbles contain information of different
types, and may refer to other sources inside and outside of the jar.
Sources that are directly available are either with us, or inside the jar.

Information Need:

R1. Query 

R2. Consult 

A1. Annotate 

S2. Communicate 

S1. Apply 

 A2. Index 

• ————————-

• ————————-

• ————————-


• ————————-

• ————————-

• ————————-

• ————————-

• ————————-

• ————————-


• ————————-

• ————————-

• ————————-


• ————————-

• ————————-

( Background )  Need description / question

Figure 1.3: Information task framework: the source jar. The jar contains source
‘marbles.’ As we work we add, create, annotate and organize the sources in the jar,
and record completed information tasks on the jar labels.



1.2. Information Task Framework 15

The jar lid is labeled with the background of the searcher, and the
need that information is being retrieved, analyzed, and synthesized
for. Stickers on the outside of the jar record information tasks that we
perform to address this need. When we find or create a new information
source, we add a marble to the jar.

If a new source annotates another source, we place it in a container
with the source it describes inside the jar (e.g., using a small plastic box).
indexing produces a marble containing a description of which sources it
organizes, and how. We take source marbles and containers out of the
jar to use them, and return them to the jar when they are no longer
useful. It is also possible to lose sources when the jar is accidentally left
open and ‘spilled.’5 When we stop working to find and create sources
for our information need, we select any sources we might wish to use,
and then close the lid.

We can imagine having a shelf of these jars for different information
needs. For a new information need we create a jar, adding any potentially
useful initial sources to the jar (possibly from other jars). To reuse or
get additional information for a need we worked on previously, we open
a jar from our shelf.6 Just as in the real world, not replacing sources
in a jar runs the risk that we lose track of it, and have to pick up an
old jar and work to refind that source, or find a replacement for the
information in the lost source.

This informal jar model is intended to roughly capture how people
experience working with information in a simple way. It captures observ-
able sources and observable task actions. We tend to move from source
to source, performing tasks of specific types with a goal in mind. We
are often unaware of why we performed tasks in a particular order, and
so this is not represented explicitly, other than as marbles moving in
and out of the jar and notes for which information tasks were executed
being written on the outside of the jar.

5e.g., ‘the dog ate it,’ ‘my internet is down,‘ or ‘I know it’s here...somewhere.’
6e.g., ‘Wait; I forgot one of the types of category theory applications I wanted

to discuss in my paper from my notes...’



16 Sources and Information Tasks

1.3 Information Needs and Information Task Strategies

When searching for mathematical information, what we need to find will
vary from finding definitions for terminology, math symbols, formulas,
operational knowledge such as proof techniques, applications of math-
ematics (e.g., information retrieval models), resources for instructors,
and detailed information on mathematical spaces, theorems, etc.

Example 1.1 illustrates information needs that different audiences
may be seeking to address using the same query, along with a list of
sources that might be used to address their needs. These needs vary
from finding definitions to exploring sophisticated relationships between
the generalization of the theorem in different mathematical structures
(Hilbert spaces) and applications in other fields (quantum mechanics).

Example 1.1: Differing Information Needs

Query: What does a2 + b2 = c2 represent and how is it useful?

Students might use this query to learn the Pythagoras theorem, and
perhaps find an example demonstrating the theorem, and a
possible proof.

Educators may have similar interests to students, but may seek addi-
tional resources on how to teach this result.

Researchers can have very different interests than the other audiences.
They may be interested in one or more of the following:

• For a mathematician: Is this true in a general metric space
and/or a Hilbert space?

• For a physicist: How is it linked to the probability assign-
ments in quantum mechanics?

• For an IR expert: How is it related to probability assign-
ments in a Hilbert space used in describing interaction for
information retrieval?

As a result, the types of sources needed by each audience differ
dramatically, but the initial (admittedly vague) query is identical: the
query intent differs for these audiences. For math information needs, we
have found it important to consider information needs both in terms
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of the desired information, as well as who is searching, and specificaly
their mathematical background. Some places where relevant information
might be found for these information needs include web-pages (MSE,
Brilliant.org etc.), YouTube videos, online lecture slides, text documents
and digital books (e.g., OpenStax, LibreTexts), articles, and online notes
(e.g., MIT OpenCourseWare).

For a broader sense of the types of mathematical information needs
users have online, Table 1.1 illustrates information needs for math
organized by Broder’s taxonomy of needs/intents behind web search
queries (Broder, 2002). While some question the usefulness of the
transactional class in Broder’s model, for math, the transactional class
is a useful distinction. For example, a user may be looking to refind
a web page they used to enter formulas in LATEX (i.e., a navigational
intent). Or, they may instead be looking to find such a web page for the
first time, thereby looking to interact/transact with as-yet unknown
websites (i.e., a transactional intent).

Within the informational needs class, a distinct subclass of com-
putational information needs exist. These include needs to evaluate or
simplify a formula, or to produce a proof for a statement using logical
operations. It was useful to distinguish questions that were seeking con-
cepts, proofs, and computation for the ARQMath shared tasks (Mansouri
et al., 2022b) that we discuss in Section 3.

In our work we have found it useful to consider math information
needs in two dimensions, based on the type of information need as
shown in Table 1.1, and the user’s mathematical background. More
formally, we have a space/set of mathematical information needs N

defined by a Cartesian product of possible information needs (T )ypes
and user/audience (B)ackgrounds (N ∈ T × B). How these types and
backgrounds interact is illustrated in Example 1.1.

Information task strategies. For a given information need, it helps to
think about strategies that might be used to satisfy it. We can sketch
these in strategy ‘jar’ diagrams as seen in the panel labeled Strategy
1. The diagrams identify an information need, initial queries, expected
tasks, readily available sources, and a list of where other relevant sources
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Table 1.1: Examples of mathematical information needs within Broder’s Taxonomy
(Broder, 2002). A user’s math background is another dimension.

Navigational: Find a specific source (‘known item’ retrieval)
Web page (e.g., for formula entry)
Document (e.g., Book, Technical Paper)
YouTube or Khan Academy Video
Podcast

Transactional: Find online resources for use/interaction
Formula entry
Evaluating and plotting a formula
Simplification of a formula
Interactive theorem proving

Informational: Find information for a topic or question
Sub-categories: computation, concepts, and proofs

How to compute an expression (e.g., integral)
Symbol and operation definitions (e.g., ζ,

(
n
k

)
)

Concept name(s) associated with a formula
When is a function not differentiable?
Who was Gauss?
Proof drafts for P = NP

might be found. We can imagine beginning a new search by writing the
information need on the lid, putting already available source ‘marbles’ in
the jar, and then writing planned tasks on the jar labels. For readability,
we use informal descriptions for the three main task types along with
initial queries.

Let us first consider search strategies that might be used by under-
graduate students, for learning how to complete a square, and to change
the base of a logarithm (Strategy 1 and Strategy 2). In both examples,
two queries that might be used are given, and the Synthesis tasks clarify
the specific information need: the source they want to produce. In the
first example, this involves completing an exercise on paper, and in
the second example, obtaining a value from a calculator. Note that for
the queries containing formulas, students might find it difficult or be
unable to express the formulas in queries using a standard text query
box, particularly if they are unfamiliar with LATEX.
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Strategy 1: (Student) Completing the Square
Retrieve:

Query: how to complete the square
OR ax2 + bx + c = (⋆)2 + constant?

Search using the text query or possibly the symbolic query; (⋆) is a wildcard for
any subexpression. Identify where the general method can be found, and examine
the proof of the result.

Analyze: Mark-up/bookmark sources to identify useful information. Use a notebook to
summarize key details found in sources. Save examples for different cases, e.g.,
a, b > 0 and c ≤ 0.

Synthesize: Solve an integration problem on paper, such as

∫
1

x2 + 4x + 3
dx.

Initial Sources: Textbook

Possible Sources: ChatGPT, YouTube, Prof. X?

Strategy 2: (Student) Log Base Change
Retrieve:

Query: log base change OR how to convert logb x to logc x?

The student may use the text or symbolic query. Find sources giving the conver-
sion rule with general bases.

Analyze: Markup sources and note down where relevant sources are located in a list
(e.g., in a text file). Save some special cases like converting log10 x to ln x.

Synthesize: They use this to compute log4 13 on a calculator as the log button on
most calculators only represents log10(·).

Initial Sources: Web page on log conversion (hard to read)

Possible Sources: Somewhere online?

Now let’s consider more advanced information needs for researchers.
The researchers may be interested in following progress on an old
conjecture (e.g., Riemann Hypothesis). Or, they may be interested in
learning about a new possible proof of the problem, or perhaps they
were unfamiliar with the problem but are curious to know more about
it. Strategy 3 seeks information and a proof for a problem that was
posed in 1994. It became a major unresolved question in mathematical
computer science until 2019, when Hao Huang solved it. Notice that
our researcher is aware of many places where relevant sources for their
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Strategy 3: (Researcher) Sensitivity Conjecture
Retrieve:

Query: What is Sensitivity Conjecture? Has it been proven?

Find papers/books defining the conjecture and providing proofs.

Analyze: Since the conjecture is very technical, retrieved material is annotated with
sources where terminology in the conjecture can be comprehended. An index
(graph) is made capturing the chronological account of progress on the proof.

Synthesize: Results and the methods for proving this conjecture are used for similar
problems, and new articles/material are created to disseminate the findings.

Initial Sources: Email from colleague suggesting this might be relevant for my work.

Possible Sources: online encyclopedias (Wikipedia, Wolfram MathWorld), online Q&A
sites (MathOverflow.net, AoPS, sciencedirect.com), YouTube videos, online lec-
ture notes, text documents (e.g., digital books, research articles), online science
& math magazines (Quanta Magazine), online math databases (Cornell’s mathe-
matics library, zbMATH Open, AMS: Math Reviews)

information need may be found in comparison with the undergraduate
examples.

As another example, imagine that another researcher encounters
a technical statement for the sensitivity conjecture, but which does
not name it. They want to know the status of the statement, and if
there are associated results they can use in their own work. Here the
searcher only wants to learn the conjecture’s name, properties, and
proofs for later reference. The strategy from Strategy 3 needs to be
altered, as reflected in Strategy 4. In this second case, the researcher
has a document summarizing the key findings and where sources may
be found.

A related challenge is that the interpretation of most mathematical
expressions is context-dependent, i.e., the same formula may refer to
different concepts in different contexts. For example, a student looking
to understand the formula π(m + n) using search will likely end up with
multiple interpretations, which might represent:

• the distributive law: π(m + n) = πm + πn, or
• the value of the prime-counting function that counts the number

of primes less than or equal to m + n.
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Strategy 4: (Researcher) Unknown Conjecture
Retrieve:

Query: Any set H of 2n−1 + 1 vertices of the n−cube contains a vertex with at
least

√
n neighbors in H.

The search is done using a textual query with LATEX for the formulas. Related
papers/books are collected and consulted for theorem definitions and proofs.

Analyze: Retrieved sources are annotated with links to other sources where terminology
used can be comprehended. Highlight the name of the statement when it is found.

Synthesize: Create document summarizing the theorem name and key details, with
cites/links to key sources found. Include link to a file directory on a laptop
where additional notes in text and LATEX files can be found, if any.

Initial Sources : Research paper with technical statement of interest

Possible Sources: online math databases (Cornell’s mathematics library, zbMATH
Open, AMS: Math Reviews), . . .

This property of a single object signifying multiple entities is known
as polysemy, such as the word ‘apple’ being used to represent both a
food and a company, and often poses challenges for both information
retrieval and natural language processing.

User studies and use cases. There are a small number of papers
examining math retrieval online. We know of just two studies looking
at user behaviors in text-based search engines for math. The first
was for the DLMF system (Miller, 2013), which supported text and
formula search in a standard text box using queries in a LATEX-based
formula syntax. Few users at the time visited the site intending to
search using formulas, most likely because of its novelty, and because
this capability wasn’t prominently featured on the site. What math
queries were used were often short, or even single symbols. There also
tended to be fewer click-throughs to pages from search results, and more
query reformulation for formula queries; whether users were browsing
formula search results for interest, had challenges satisfying information
needs, or some combination of these is unclear.

The second log study was for a standard text-based search engine
(Mansouri et al., 2019b). Query logs from a Persian general-purpose
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search engine were used. Compared to the general case, search sessions
for math topics were typically longer with more query refinements (i.e.,
changing queries to try and improve results) and were less successful. In
contrast to the DLMF study, queries were also longer and more varied
more than queries overall. This was partly because many math queries
appeared to be questions copy-and-pasted from exercises or homework
assignments.

In another interesting study, posts to threads in an online math
Community Question Answering (CQA) site were studied (MathOver-
flow7). The authors identified patterns in the collaborative actions they
exhibit (e.g., providing information, clarifying a question, revising an
answer) and their impact on the final solution quality (Tausczik et al.,
2014).

Earlier work considered use cases for math-aware search in a study
of mathematics graduate students and faculty (Zhao et al., 2008). Sur-
prisingly the participants did not find formula search was useful overall,
perhaps because they generally knew the names of entities they wanted
to search on. The study also points out that the type of a source is an
important relevance factor (e.g., exercises vs. code). Another analysis
of expert use cases is also available (Kohlhase and Kohlhase, 2007), in
which formula search was studied using the MathWebSearch tool.

1.4 Retrieval Systems

Figure 1.4 provides an overview of retrieval system interactions with
people, and the specific sub-tasks from the ‘jar’ framework that they
perform. Unlike the freely interacting tasks of the ‘jar’ model, retrieval
systems generally perform information tasks in a fixed order, shown by
arrows in Figure 1.4. The figure has two main information flows for the
collection of sources that a retrieval system uses.

1. Index construction (offline). Information passes from the
sources at top and flows to the bottom-right, as sources are
annotated with additional information, and then used to compile
a searchable index of patterns. The collection index is precomputed
before the system is used for retrieval.

7https://mathoverflow.net

https://mathoverflow.net
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Figure 1.4: Information tasks in retrieval systems (backend). Arrows show the flow
of information. All tasks in Figure 1.3 other than Apply are shown.

2. Retrieval (online). Submitted queries are annotated and then
matched against patterns in the index, returning one or more
matching sources. The collection is generally consulted for pas-
sages, bibliographic data, and other contents when generating the
result returned to the user.

Consulting sources. Search engines that match queries to contents in
sources are a type of filter. A standard search result is useful precisely
because it contains sources with patterns of information shared with
the query, omitting all other sources.

The implementation of consult tasks that access sources is important
for both index construction and retrieval, and is another way that sources
are filtered in a retrieval system. Source contents shown in search results
directly impact our impression of which returned sources are promising.
Source contents used for index construction define the available patterns
for matching queries to sources.
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For example, omitting high frequency terms from queries and sources
that do not signify a topic (i.e., skipping stop words such as ‘the’) can
greatly reduce index sizes and increase retrieval speed, but at the risk
of performing poorly on queries using these terms; a classic example is
the phrase ‘to be or not to be’ from Shakespeare’s play Hamlet, which
is instantly recognizable but composed entirely of stop words.

For math-aware search, a similar decision would be omitting tokens
and strings representing formulas (e.g., in LATEX source files). Limita-
tions on what can be consulted includes formulas in PDF documents,
which are usually not represented explicitly (Shah et al., 2021). This
and other missing information can be addressed by annotating sources.

Annotation and indexing. In addition to selecting source contents in
the consult step, we will also annotate sources with additional informa-
tion. This extra information can be used to add patterns for matching
sources in the index, or to add information to retrieval results.

For example, some neural net-based techniques such as SPLADE
automatically add words that do not appear in a source to the inverted
index (Formal et al., 2021).8 These additional terms are synonyms and
other words appearing in similar contexts within a training collection.
For math, a simple example is adding additional representations for
formulas in sources, such as generating Content MathML for operator
trees corresponding to formulas represented in LATEX or Presentation
MathML, allowing formulas to be searched using both formula appear-
ance and operation structure.

From the information obtained through consulting and annotating
documents, an index of patterns for matching queries is produced. This
can take different forms, but is generally one or a combination of:

1. inverted indexes that map patterns to sources and source locations
(e.g., tokens or paths in graphs for math formulas), and

2. embedding spaces mapping patterns to points in a vector space,
where entities with more similar contexts across a collection are
closer (e.g., words, sentences, and formulas).

8This augmentation is also applied to queries. Query annotations are called a
query expansion when they add tokens or other patterns for matching additional
sources in the collection.
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Embedding vectors have their own dictionary mapping vectors to specific
sources or source locations (e.g., when search is done on text passages
or individual math formulas). This allows sources matched in vectors
to be consulted when communicating results to users.

Retrieval: Querying sources and communicating system results. We
query a collection using the collection index and an annotated query
containing additional terms and/or an embedding vector. Search using
inverted indexes is referred to as sparse retrieval, while search using em-
bedding spaces is referred to as dense retrieval, based on the underlying
vector representations for each. In particular, term vectors representing
the presence of words or formula structures in a document are mostly
zeros. In general, sparse retrieval models such as BM25 that use tokens
or other source contents directly for lookup are faster (Robertson and
Zaragoza, 2009), but dense retrieval models such as ColBERT (Khattab
and Zaharia, 2020) are more effective (Wang et al., 2023; Giacalone
et al., 2024). Some retrieval models use dense models to improve sparse
models e.g., SPLADE, mentioned earlier.

The improved effectiveness of dense retrieval models is partly from
additional context used in defining patterns, e.g., using the words refer-
ring to and surrounding a formula to represent a formula in a pattern vs.
the formula alone. The use of a vector space also provides more holistic
and flexible pattern matching, e.g., finding source vectors with the most
similar angles to a query vector, rather than matching query formula
tokens individually to vocabulary entries in an inverted index. These
help bridge the vocabulary problem discussed in the next subsection.

How the final result of a query is communicated (generated) can
vary substantially, and often makes use of query and source annotations.
In a traditional search engine, specific sources are matched in the index
for the query task, with the index comprised of some combination of
inverted indexes and embedding spaces. Source contents are then used
to generate a result in the communicate task, using sources and source
locations matched in the index.

However, for a generative question answering or retrieval system, the
result of the query task may be a single vector capturing the similarity
of patterns in the query to patterns within sources of a very large
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collection produced using a neural network. This vector is then used in
the communicate task as a starting point for generating the response,
for example using a second recurrent neural network trained on the
collection, possibly along with additional information from the original
collection of sources (e.g., with references to specific sources). Some are
used to generate a list of ranked sources directly (Zeng et al., 2024),
ultimately producing an extractive search result summary based on
source contents.

Other recent systems such as Google’s AI search assistant produce
abstractive summaries of retrieved sources, which summarize matching
sources but without limiting the summary to contents found in the
matched sources or their annotations.

System design. System designers and IR researchers are interested
in the efficiency and effectiveness of a retrieval system. As seen in
Figure 1.4, these are observed in live systems through query and user
interaction logs. For experiments, system results are computed using
simulated user interactions for a fixed set of queries, and relevance
scores for sources, along with a description of the information needs
associated with each query. Designers and researchers also make use of
additional tools for evaluation, some of which we discuss in Section 3.

1.5 User Interfaces and System Interactions

User interfaces play a very important role in mathematical information
retrieval. In addition to executing queries and returning results, how
queries are entered, how results are returned, and how other information
tasks in Figure 1.3 are supported can help speed up or even limit a
person’s efforts to find and use information.

We next present a user-centered view of retrieval systems in math
information tasks. We then share some key challenges for retrieval
system interaction, along with interface designs aiming to address them.

Interfaces-in-the-task-loop. Figure 1.5 illustrates a student working
to change the base of a logarithm (i.e., Strategy 2) using multiple
retrieval systems. At the bottom-left of Figure 1.5 is a jar holding
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Figure 1.5: Interacting with multiple retrieval systems (frontend). Each dotted
arrow represents a retrieval system backend (see Figure 1.4). Sources currently used
to address the information need are shown in a separate container at bottom right.

sources the student had on hand when they started searching, new
sources they find or create, along with other linked sources, e.g., by web
link, citation, or mention. In addition to these sources, their queries,
results from queries, and handwritten notes (e.g., from converting bases
by hand) are also found in the jar. Of these available sources, the ones
currently being used are at the bottom-right of Figure 1.5.

Some selected sources being worked with partially or fully answer
the student’s needs, but others do not, such as sources later deemed
not relevant. Other selected sources might exercise knowledge such as
shown for the Apply task in Figure 1.5, or come from other tasks such as
annotating and indexing sources of interest. Some selected sources may
be added even after finding answers, perhaps because they provide a
different perspective, or have a presentation that is easier to understand.

For more complex tasks, we often see the focus of our selected sources
drift. In the berry picking model of retrieval (Bates, 1989), people see
their queries and information needs change as they search and learn.
Particularly for unfamiliar topics, our needs and queries may change



28 Sources and Information Tasks

dramatically as our understanding does (Belkin, 1980). For example,
this is likely to happen when a person explores unfamiliar concepts
associated with unfamiliar notation. In our jar model, information need
changes involve changing the jar lid label, perhaps using an orange
sticky note placed over the original description.9

What we have in Figure 1.5 is a person generating, selecting. and
using sources for needs that may change as they work. Retrieval systems
are a part of this process, but not the focus.

Interaction challenges. All systems embody design decisions and
biases. Naturally, no one retrieval system will be ideal for all queries or
subjects. However, users often have challenges in search that are more
cognitive than system-related. These are important considerations in
creating usable systems, particularly for search interfaces (Hearst, 2009;
White, 2016; Holmes et al., 2019).

Norman identifies two ‘gulfs’ that limit human task performance
(Norman, 1988). Broadly speaking, for retrieval systems the two main
categories of interaction challenges are with expressing queries (a gulf
of execution) and interpreting search results (a gulf of evaluation). In
both cases, for unfamiliar topics, the user may be unable to formulate
an effective query or interpret results reliably precisely because of what
they do not know, or because their understanding is incorrect (i.e., their
Anomalous State of Knowledge, Belkin, 1980).

A common cause of a gulf of execution in query formulation is
the vocabulary problem, where the terms/patterns a person uses for
search differ from those used to index sources. For example, in one
study undergraduate students were challenged while trying to define
the binomial coefficient ‘

(n
k

)
’ (Wangari et al., 2014). Because of this

notation-based vocabulary problem, the students’ were unable to find
a definition using standard text search. When allowed to enter the
expression by hand with automatic translation to LATEX, they found
definitions using the same text search engines.

People sometimes also encounter a gulf of evaluation when trying
to identify relevant information in search results. Aside from missing

9Sticky notes: a versatile information tool in this section and in life.
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relevant items in results due to the vocabulary problem, an important
factor here is how retrieval results are presented to a user. For example,
Reichenbach et al. (2014) report statistically significant differences in
the ability of participants to identify relevant sources in SERPs when
excerpts present formulas as raw LATEX vs. rendered formulas. Additional
gulfs occur when selected excerpts are not relevant for a need, or a
person lacks the math background to understand a result.10

Learning new terminology and notation while searching allows a user
to extend their patterns used to express queries and identify relevant
results, bridging these gulfs of execution and evaluation. Some of these
new patterns might be recorded explicitly in a source, e.g., recording
an unfamiliar notation for eigenvectors on a blue sticky note.

Query input: math-aware search bars. For the most part, math-aware
search bars differ in how they include formulas. Perhaps the simplest
design is for users to enter both text terms and formulas as text. An
early example is the Digital Library of Mathematical Functions11 which
accepts LATEX commands for formulas along with text terms in queries
(Miller and Youssef, 2003). The more recent Approach Zero system12

system uses MathQuill13 to render LATEX formulas as they are typed
in the search bar, and allows writing lines and argument positions to
be reached with arrow keys rather than LATEX commands (e.g., for
superscripts and fraction denominators).

To avoid remembering many names for operations and symbols,
or to avoid unfamiliar LATEX or other syntax for creating formulas,
usually a palette of buttons with images for symbols and operations
accompanies the search bar. Buttons add formula elements including
operation structures (e.g., fractions, integrals, and radicals) and symbols
not found on a keyboard (e.g., greek letters such as ζ (zeta)). Query
bars with palettes often display formulas in a structured editor like
those in document editors (e.g., Word). Early examples of prototypes
with symbol/operation palettes include MathWebSearch (Kohlhase and
Prodescu, 2013) and MIAS (Sojka et al., 2018).

10Impatience, inattention, mental strain, and tiredness are also factors here.
11https://dlmf.nist.gov
12https://approach0.xyz
13http://mathquill.com

https://dlmf.nist.gov
https://approach0.xyz
http://mathquill.com
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As another way to reduce the effort and expertise required for
formula entry, some search bars also support multimodal formula entry.
Multimodal query editors allow formulas to be uploaded from images
or entered using handwriting in addition to standard keyboard and
mouse-based entry. There are also multimodal tools such as Detexify,14

which looks up LATEX commands for symbols drawn using a tablet
or mouse (Kirsch, 2010). In addition to search, recognizing math in
handwriting and images has been used for interactive computer algebra
systems and other applications, and is an active area of research dating
back to the 1960’s (Zanibbi and Blostein, 2012; Truong et al., 2024).

An example of a search bar with multimodal formula entry is the
MathDeck system15 (Diaz et al., 2021). As seen at the top-left in Figure
1.6, a text search box can be used to enter words and LATEX for formulas.
Formulas can also be added from a visual formula editor shown at the
center-left in Figure 1.6, and using formula ‘chips’ with embedded LATEX
(e.g., blue oval at right of the query text box). Like MathQuill and
structured formula editors, MathDeck renders a formula as it is entered,
but with more flexible subexpression selection and entry. MathDeck’s
query and formula entry interface is designed to:

1. support text entry; natural for text, and one can easily type ‘x +
2’, or copy-and-paste LATEX with small changes (e.g., a → x)

2. provide symbol palettes to help enter symbols and structures
3. provide handwriting input for those who prefer it, and to avoid

searching palettes for symbols & structures
4. support formula reuse in chips; chips can be used in editing, and

can be exported/shared as images with LATEX metadata
5. construct formulas interactively using a structured editor, with

larger formulas easily built up from smaller pieces.

Other multimodal query entry interfaces have similar design goals,
most commonly to support image and keyboard/mouse input.

Other familiar ways to reduce query and formula entry effort are
query suggestions and query autocompletion. Their helpfulness is related

14http://detexify.kirelabs.org/classify.html
15https://mathdeck.org

http://detexify.kirelabs.org/classify.html
https://mathdeck.org
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Figure 1.6: MathDeck query entry, formula chips, and cards (Diaz et al., 2021).
Chips can be dragged, edited, and combined. Editing may be done using raw LATEX,
or a combination of operations, chips, handwriting, and LATEX using the canvas
at center. Formula cards (bottom left) contain chips, titles and descriptions. New
cards can be created by users, and searched by formula & title (video: https:
//www.youtube.com/watch?v=XfXQhwIQlbc).

to the principle of recognition over recall: it is usually easier to recognize
something we see than recreate the same thing from memory (Hearst,
2009). As a simple example, a query autocompletion might include a
concept whose name but not formula we can remember, and allow us
to quickly select a query containing both.

To illustrate the communication of retrieval results, we will use a
system for visual search that uses an inverted index. Figure 1.7 shows
handwriting in math lecture videos being queried with a LATEX-generated
formula image. The inverted index uses pairs of symbols (e.g., (I, n),
(=, A)) as the vocabulary for lookup. Before searching, the query image
is annotated with a graph containing nodes for symbols and edges with
angles between adjacent symbols.

The inverted index is queried by looking up all adjacent query
symbol pairs, to find their occurrences in the video collection. Each
entry in the posting list for a queried symbol pair (e.g., (I, n)) refers to
an edge connecting the same symbols drawn in a video. Before indexing,
videos are annotated with keyframes of drawn symbols that overlap in

https://www.youtube.com/watch?v=XfXQhwIQlbc
https://www.youtube.com/watch?v=XfXQhwIQlbc
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Figure 1.7: Tangent-V Formula Search Results (left) and Video Player Supporting
Navigation (right) (Davila and Zanibbi, 2018). A rendered LATEX formula is used to
search handwritten math symbols recognized in a video (Davila and Zanibbi, 2017b).
Here the user has clicked on the ‘=’ of a matched formula on the whiteboard, and
this advances the video to where it is first drawn (video: https://www.youtube.com/
watch?v=gn24qo1MLN0).

time along with an adjacency graph for each keyframe. Each edge in a
keyframe graph is added to the posting list for its pair of symbols, as a
posting containing a unique identifier for the edge, its keyframe graph,
and video. In Figure 1.7, zoomed-in video keyframe graphs are shown
in the results on the left, and keyframe thumbnails are shown at the far
right.

Query response: communicating results. It is actually the drawn
symbol keyframes annotated on videos that are searched. Keyframes are
scored by the similarity of matched adjacency subgraphs to the query
graph, based on the similarity of matched symbols (nodes) and their
angles (edges). In the results shown in Figure 1.7, symbols matched in
a query/keyframe have the same color, and matched graph edges are
red. To avoid missing symbols due to recognition errors, symbol pairs
are indexed using all combinations of possible labels for each symbol.
This is how n matches M in the second match shown.16

Let’s consider the results in Figure 1.7 more closely, with associated
system tasks in Figure 1.4. The query result shows the top-2 matching

16A variation of adding tokens to queries and documents to increase possible
matches in an inverted index. Symbol similarity is computed from all label prob-
abilities assigned to each symbol. Tangent-v has also been used to search formula
collections using unique symbol labels in PDF (Davila et al., 2019).

https://www.youtube.com/watch?v=gn24qo1MLN0
https://www.youtube.com/watch?v=gn24qo1MLN0
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videos, and not keyframes. To generate this view, the keyframe ranking
from querying the index is restructured as a video ranking, with videos
ranked by best keyframe match. Also, the annotated query and videos
have been consulted to produce the graph matches shown for each video.
The videos are consulted again for annotations not used for indexing:
clicking the mouse on a symbol in a result keyframe makes the video
player jump to where the symbol starts to be drawn.

How the search results filter and present the videos is motivated
by tasks users carry out (see Figure 1.5). For example, having symbols
linked to frames can help people consult videos by quickly navigating to
where a formula is drawn and discussed. Results rank videos rather than
keyframes to make the search results more concise and easier to consult.
The communication, annotation, indexing, and querying tasks can also
be supported from search results. In MathDeck formulas in results can
be used directly for search, selected for editing or export, or annotated
in a card with a title and description. Cards are also automatically
indexed in a ‘deck’ searchable by formula or title.

Showing matching graphs in results is more helpful for designers
than users; simple bolding or highlighting is more common. In contrast,
MathDeck’s search results highlight matched query words and formulas
located in PDF documents (e.g., for papers from the ACL Anthology,
Amador et al., 2023).17

We’ve used just two systems here to illustrate search results that
rank sources, and how they interact with human information tasks.
However, results from other systems have different types. Some systems
plot, simplify, and/or perform requested operations on formulas, or pro-
vide solutions for math problems posed in text and/or fomulas directly
(e.g., using WolframAlpha or a math-aware chatbot). In these cases
the response is an answer to a (possibly inferred) question, rather than
a ranked list of sources. These are designated as question answering
systems, and interactions with chatbots addressing math queries are
a type of conversational search where clarifying questions and addi-
tional information may be provided or received in multiple rounds of
query/result interactions.

17ACL Anthology search demonstration: https://drive.google.com/file/d/1fbiMy
HtlfEYUJvmrbZsWzhfL0X_zo9-t/view.

https://drive.google.com/file/d/1fbiMyHtlfEYUJvmrbZsWzhfL0X_zo9-t/view
https://drive.google.com/file/d/1fbiMyHtlfEYUJvmrbZsWzhfL0X_zo9-t/view
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Chatbots using Large Language Models (LLMs) have proven intrigu-
ing and useful in some instances, but there is an increasing awareness
of issues related to the validity of responses and other substantive con-
cerns (Bender et al., 2021). However, any retrieval result is only an
information source – understanding and verifying any source requires
additional work. Related to this, in Community Question Answering
platforms (CQAs), many posts request clarification of a question, or
clarify/correct posted answers and comments.18 This illustrates how
human responses to math queries also often contain misunderstandings,
ambiguities and errors.

Regardless of the result type, how information is chosen and pre-
sented in results is important. It has a real impact on the usefulness
of the result as a source of information, and on how tasks other than
consulting the result itself are supported. In many cases usability testing
can be used to check the effectiveness of result presentations and other
interface design elements, and to discover refinements and alternatives.19

Supporting tasks for individual sources. Programs used to view/con-
sult sources can also help with the user tasks illustrated in Figure 1.5.
A nice example is the ScholarPhi system shown in Figure 1.8 (Head
et al., 2021). Reading formulas can be challenging, as symbols may be
defined throughout a paper. ScholarPhi provides annotations decorating
a selected formula/subexpression, providing symbol definitions in-place.
Definitions are linked to where they appear, and text not associated
with a selection is greyed out.

To produce the definition views in ScholarPhi, sources need to be
annotated with formulas, symbols, and definition locations, and then
definitions need to be linked with associated entities where they appear
in the paper (i.e., symbols or subexpressions). Definition segmentation
and linking entities are performed with natural language processing
techniques. The original prototype identified math symbols within LATEX
source files used to generate PDFs, simplifying formula detection.

18Including the classic, ‘my correction to @your correction.’
19e.g., parts of the MathDeck were usability tested (Dmello, 2019; Nishizawa,

2020; Diaz, 2021), which led to substantial improvements.
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Figure 1.8: ScholarPhi system showing definition for math symbols found within
the same PDF paper (Head et al., 2021). To assist skimming for details, text other
than for definitions of a selected formula is greyed out (video: https://www.youtube.
com/watch?v=yYcQf-Yq8B0).

A second example is the keyframe list at right in Figure 1.7. When
viewing a video, all keyframes for handwritten content are available in
a thumbnail list. Keyframes can be selected, and individual symbols
clicked on to jump to where it is first drawn in the video (similar to the
search results). This requires annotating video sources with generated
keyframes produced using computer vision techniques.

Both ScholarPhi and Tangent-v require generating additional in-
formation using automated inference (i.e., AI), and their usefulness
is limited by the accuracy and scalability of the methods employed.
However, we believe that this is an important future direction for math-
ematical information retrieval, because the content and organization
of mathematical sources can be complex. Particularly for non-expert
users, mature versions of these techniques may be very helpful.

A number of well-known formats were devised or augmented to
support detailed annotation with links and tags, including TIFF, PDF,
and XML. Unfortunately, detailed ‘semantic’ annotation has proven
difficult at scale despite significant efforts. Some possible reasons include
the time required to create sources before annotations, the diversity of
information needs (e.g., which information do we annotate?), attaching

https://www.youtube.com/watch?v=yYcQf-Yq8B0
https://www.youtube.com/watch?v=yYcQf-Yq8B0
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large annotations makes files large and unwieldy, and overall progress
in scalable AI has been slower than many anticipated.

As AI continues to improve, creating source annotations to support
examining and navigating math sources and other user information tasks
within UIs seems likely to be beneficial. Perhaps application-specific
annotations such as those used in ScholarPhi, Tangent-v, and MathDeck
are a good starting point.



2
Annotating and Indexing Sources

In this section we focus on indexing formulas and text in sources, as
illustrated in Figure 1.4. This requires consulting sources, annotating
formulas and text with additional information, and then constructing
‘sparse’ inverted indexes for looking up discrete patterns directly (e.g.,
words or paths in formula trees), and/or ‘dense’ indexes representing
the same patterns in embedding vectors, which are searched based on
the similarity of an embedded query pattern with items in the index
(e.g., using vector angles). With this data, a variety of sparse and
dense retrieval frameworks can be used for a variety of search, question
answering, machine learning, and evaluation tasks.

We will consider each of the three main tasks needed for indexing in
turn, starting with the types of information and representations used
in mathematical information sources.

2.1 Consulting Sources for Mathematical Information

Let’s first consider how we consult sources for mathematical information
using some examples. The examples come from technical documents
and search queries, but much of what will be said applies equally well
to videos, audio, conversations, text messages, and other source types.

37
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We will start with a definition of the Inverse Document Frequency
(IDF) shown in Example 2.1. IDF is used in a number of influential
sparse retrieval models including variants of TF-IDF (Term Frequency-
Inverse Document Frequency) and BM25 (Robertson and Walker, 1994;
Robertson and Zaragoza, 2009). Its utility comes from a simple but
profound insight: query terms appearing in fewer documents are rarer
and thus more specific, and so should be given higher weight when
ranking documents using matched query terms (Jones, 1972).

Example 2.1: Inverse Document Frequency (IDF)

Excerpt from Robertson (2004)
...Assume there are N documents in the collection, and that term ti

occurs in ni of them . . . the measure proposed by Sparck Jones, as a
weight to be applied to term ti, is essentially

idf(ti) = log N

ni
(1)

Variable and function definitions

38 Representing Formulas and Text

Example 2: Inverse Document Frequency (IDF)

Excerpt from (Robertson, 2004):

. . . Assume there are N documents in the collection, and that term ti
occurs in ni of them . . . the measure proposed by Sparck Jones, as a
weight to be applied to term ti, is essentially

idf(ti) = log N

ni
(1)

. . .

Word and formula sequence:

Assume there are N documents in the collection, and that term occurs inti ni

Equation (1) operations and appearance:

idf

t i

=

log

divide

N

n i

sub

sub

idf ( )t

i

= log —

N

n

i

Left: Operator tree (OPT) with hierarchy of operations and arguments.
Right: Symbol layout tree (SLT) placing symbols on writing lines.

For example, the term ‘BM25’ is predominantly found in sources on
information retrieval, while the term ‘weight’ is used for many topics
and in multiple senses, including the heaviness of an object and scaling
numeric values. When scoring documents against the query ‘BM25
weight’, matches for ‘BM25’ will have higher IDF scores than ‘weight,’
reflecting the narrower usage of ‘BM25.’

Despite its brevity, the excerpt in Example 2.1 contains a fair amount
of directly represented and implied information. Recovering some of
this information requires pattern matching and inference, i.e., applying
information known, found in the passage, or found in other sources. To
illustrate this, we annotated the definition at the bottom of Example
2.1. Underlining and highlighting are used to associate variables and
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function names with their definitions in the text. ‘them’ is placed in a
box with a thin outline to represent the anaphoric (backward) reference
from ‘them’ to ‘N documents.’ Knowing that ‘them’ refers to documents,
we can infer that ni is the number of documents containing term ti.

In this way, gathering information from a source involves a com-
bination of consulting the source to identify stated information, and
analyzing the source to reveal additional information from explicit and
implied linguistic patterns and relationships. Both activities are in-
formed by available knowledge, i.e., readily available and actionable
information that we have previously seen or inferred, or find by nav-
igating to other sources or querying for new sources (e.g., following
hyperlinks, or asking a person).

Example 2.2: Information extracted from definition in Example 2.1

Variables: placeholders for a set of values, similar to common nouns

• The text identifies N as the number of documents in a collection.
N is like a common noun, because the collection is not specified.

• The text defines ti as any term appearing ni times in a collection,
with shared identifier i, e.g., (t3, n3) could be (‘weight’, 11).

Functions & Operators: create new from given values, like verbs

• log: log function with unspecified base.
• idf(ti): aside from the unspecified log base, a concrete function

in Equation (1). The text says this gives a weight for term ti.
• Division ( ·

· ), application (idf(·), log ·), and equivalence (=)
appearing in Equation (1) that are not defined in the excerpt.

Additional context:

• The text indicates Spärck Jones introduced the idf formula in a
different, unspecified form (Jones, 1972).

Following this process, we gathered the information shown in Exam-
ple 2.2. Note that the underlined missing details are deliberate omissions:

• By not specifying a collection, N is defined for any collection.
• ti and ni give any term and a count for documents containing it.
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• Omitting the logarithm base emphasizes that logarithms increase
with input size (i.e., they are monotonic) and so any base suffices.

• Function application and the operators used are common, and
their definitions are assumed to save space and reader effort.

These omissions are helpful, provided the reader can infer the missing
details they need: the definition would be longer and harder to read
otherwise. More generally, what an author chooses to omit is informed
by (1) the context and focus of discussion, i.e., items discussed earlier
and the current topic, and (2) the assumed background knowledge of
the audience. These determine what can and should be left out.

Note also that Equation (1) on its own conveys only partial infor-
mation. A formula presents a hierarchy of operations, but its symbol
definitions and its purpose generally come from surrounding text, other
formulas, and assumed knowledge. In this example, the text defines all
variables and the term weighting role of the idf formula, but not the
operations shown in the formula.

Let’s next consider an alternative definition for the idf function
from Equation (1) that uses no mathematical symbols:

A term’s inverse document frequency is the percentage of
documents containing the term, inverted and then log-scaled.

This seems simple enough – we invert the numerator and denominator
in the percentage of documents containing the term (i.e., ‘flip’ the
fraction) and convert this value to a logarithm.1 But we lose some useful
patterns and information when we do not use math notation:

Visibility: Formulas are italicized and use distinct symbols, making
them easier to find in sentences (inline). Also, they may be offset
from the main text and indented (displayed like Equation (1)).

Compact Reference: Referring to symbol names is more efficient than
reusing descriptions, e.g., N vs. ‘the number of documents.’

Compact Structure: Text describes relationships, while formulas show
relationships spatially, e.g., Equation (1) vs. the textual definition
above. A good example is the distributive property from algebra,
which is easily expressed using: x(y + z) = xy + xz.

1The log scale reduces the rate at which idf increases, which avoids having rare
terms completely dominate rank scores.
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Abstraction: Formulas often define properties and patterns applicable
in multiple contexts. For example, idf can be applied to formulas
if ti is redefined to refer to a unique formula, and ni the number
of documents where the formula appears. We can also redefine N0
and λ in the decay function N(t) = N0e−λt to estimate decreases
in (1) a retirement fund balance, (2) the rate of a chemical reaction,
or (3) the potential contained in a capacitor.

Judicious use of formulas in technical writing makes mathematical
information easier to find, analyze, and reuse/adapt. Which things are
beneficial to formalize in notation again depends upon a document’s
focus and intended audience.

Another idf definition and visual formula representations. The
following is an alternative definition for IDF taken from the Wikipedia
page for the tf-idf retrieval model.

The inverse document frequency is a measure of how
much information the word provides, i.e., how common or
rate it is across all documents. It is the logarithmically scaled
inverse fraction of the documents that contain the word
(obtained by dividing the total number of documents by the
number of documents containing the term, and then taking
the logarithm of that quotient):

idf(t, D) = log N

|{d : d ∈ D and t ∈ d}|

This definition for the idf formula is essentially equivalent to that in
Example 2.1. However, the formula used to represent idf has changed.
The document collection is given explicitly as a parameter D, and
the number of documents containing a term, previously ni, is now the
set size for documents containing the term. The term itself is noted
as simply t, and not ti. Also, the wiki page includes a link to the
Logarithmic scale article that we can follow to review that concept.

Example 2.3 provides an excerpt for the embedded formula in the
tf-idf article HTML page. The formula appearance is represented using
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Example 2.3: Presentation MathML from Wikipedia tf-idf article

<math xmlns="http://www.w3.org/1998/Math/MathML"
alttext="{\displaystyle \mathrm {idf}...">

<semantics>
<mrow class="MJX-TeXAtom-ORD">

<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">

<mi>i</mi>
<mi>d</mi>
<mi>f</mi>

</mrow>
<mo>(</mo>
<mi>t</mi>
<mo>,</mo>
<mi>D</mi>
<mo>)</mo>

...
</mrow>
<annotation encoding="application/x-tex">

{\displaystyle \mathrm {idf} (t,D)=
\log {\frac {N}{|\{d:d\in D{\text{and}}t\in d\}|}}}

</annotation>
</semantics>

</math>

Source: https://en.wikipedia.org/wiki/Tf-idf?oldid=1236851603.

Presentation MathML, which is an XML encoding for the placement of
symbols on writing lines along with their types (e.g., <mrow> for writing
lines and token groupings of characters (idf), operators in <mo>, variable
and function identifiers in <mi>). The LATEX string used to generate
the MathML using MathJax2 is included in the outermost <math> tag,
and in the <annotation> tag near the bottom of of the excerpt.3 Many
web browsers can render Presentation MathML directly, or can use
javascript-based LATEX rendering tools, e.g., applying MathJax to the
alttext attribute of the <math> tag.

The vast majority of documents represent formulas by their appear-
ance, whether as raster images (e.g., pixel-based PNGs), vector images

2https://www.mathjax.org.
3The <semantics> tag can be misleading: math operations are not represented.

https://en.wikipedia.org/wiki/Tf-idf?oldid=1236851603
https://www.mathjax.org
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(e.g., SVGs with drawing instructions), LATEX, or Presentation MathML.
This is because it is easier to create the appearance of a formula than to
formally define and represent its operations consistently and correctly.
We instead use a formula’s appearance to suggest operations and leave
it to the reader to go through the process of consulting and analyzing
the formula and its context to infer its meaning.

This preference for visual representations is equally true for text. We
write prose using a sequence of characters – we almost never provide a
fully annotated parse tree or other semantic representation for passages
(e.g., using first-order logic).

In general, for human readers semantic annotations have complex
structure and are often verbose. For example, imagine reading an en-
hanced version of our list-based summary of the information in Example
2.1 above, rather than the original passage. How to select and ground
primitives and relationships in semantic representations is a slippery
question, and using visual representations avoids this for authors.

Semantic representations for text and formulas. Despite their ver-
bosity and complexity, semantic representations are useful when they
capture information reliably enough for a task of interest (e.g., search
or question answering). Creating semantic representations manually is
difficult, however, we can use automated tools for this purpose. Example
2.4(c) illustrates such a representation for the query:

Find xn + yn + zn general solution

As seen in Example 2.4(a), an Abstract Meaning Representation (AMR)
graph represents text semantics using a hierarchy of subjects, objects,
actions, and attributes (Langkilde and Knight, 1998). Example 2.4(b)
shows an Operator Tree (OPT) giving the hierarchy of operations in
the query formula (i.e., adding the exponentiated variables). Both have
node and edge annotations capturing types and argument orderings.

Interestingly, the AMR graph and OPT have similar purposes and
structure. Both capture a hierarchy of events in a sentence or formula.
For example, the root of the AMR tree is a verb (find) with a mode
modifier (imperative) used to indicate that the statement is a com-
mand rather than a request. The verb has two arguments for who
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Example 2.4: Augmenting AMR Trees with Operator Trees

Abstract Meaning Representation (AMR) tree, with inserted op-
erator tree for formula in the query “Find xn+yn+zn general solution.”Contextualized Formula Search

Using Abstract Meaning Representation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
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Figure 3: Generating MathAMR for “Find G= + ~= + I= general solution” (ARQMath-2 topic B.289). (a) AMR tree with formula
replaced by formula id (b) OPT formula representation. (c) OPT root replaces formula id. Part of the OPT is not shown in (c).

using Spacy we move any punctuation (. , ! ?) from the end
of formula regions to after the �nal formula delimiter. For
example, in LATEX $a+b=c.$ becomes $a+b=c$.

(2) Replace formulas by identi�er tokens. To avoid AMR
parsing problems, we replace each formula in the input sen-
tence by a single token. For the example shown in Figure 3,
the LATEX formula G= + ~= + I= is replaced by EQ:ID, where
ID is an integer identi�er (for this example, EQ:766).

(3) Generate AMR graph. We use an embedding-based AMR
parser to generate the sentence’s AMR graph, the AMRLib5

“model_parse_xfm_bart_large” model [16]. We introduce a
new edge label ‘math’, used to connect a formula’s place-
holder node to its parent (see Figure 3 (a)).

(4) Replace formula token by formula OPT. AMR formula
id nodes are replaced by the corresponding root nodes of
formula OPTs, creating the MathAMR graph. This is shown in
Figure 3 (c) for the OPT shown in Figure 3 (b). To follow AMR
conventions, OPT edge labels are renamed from numbers to
‘opX’, where ‘X’ is the integer from the original OPT.

This is our �rst attempt at a unifying text and formulas in AMR
graphs, so we have kept our model simple. For example, we use
only OPT formula representations, even though prior research has
shown that also using SLT representations can be helpful [20, 21].

4 MATHAMR SENTENCE-BERT EMBEDDINGS
For retrieval, we embed linearized MathAMR graphs. MathAMR
graphs are linearized using a depth-�rst traversal, ignoring edge
labels for simplicity. For Figure 3(c) using the full OPT from Figure
3(b), the linearized MathAMR string is:

find-01 you thing general-02 solve-01 equal-01

math plus SUP z n SUP y n SUP x n imperative

MathAMR strings are embedded using Sentence-BERT [27], and
retrieval performed using Sentence-BERT’s cosine similarity imple-
mentation. To train Sentence-BERT models, we used the pre-trained
all-distilroberta-v1 model, with ARQMath-1 [34] topics and
the training topics from ARQMath-2 [22] used for �ne-tuning.

Formula search results in ARQMath are scored as high, medium,
low, or not-relevant. For training, we assigned a relevance score of
1 for high and medium, 0.5 for low, and 0 for non-relevant. Training
5https://github.com/bjascob/amrlib

data contained triplets of the form: (query formula, candidate
formula, relevance score).

For training, we employ a model and multi-task learning frame-
work in Sentence-BERT 6 used previously to detect duplicate Quora
questions by �rst minimizing the distance between positive pairs
and maximizing the distance between negative pairs using a con-
trastive loss function [5]. Then, the multiple negatives ranking loss
function [11] is used, which considers only positive pairs, minimiz-
ing the distance between positive pairs out of a large set of possible
candidates, making it well-suited to ranking tasks.

During training, in each epoch we compute the Spearman corre-
lation between the embedding cosine similarity and the label score
on the validation set. After training the model with a �xed number
of epochs, the model with the lowest validation loss is selected.

5 EXPERIMENTS
Test Collection and Training Data. For training we use all 74
assessed ARQMath-1 topics, along with the 12 training topics from
ARQMath-2. This provides a total of 21,411 training triples of the
form described in the previous section.

To create a validation set, we separated the triples for each rele-
vance rating (high, medium, low, non-relevant) into sets, and then
divided each triple set randomly, using a 90%/10% split. The 10%
splits were then combined and used as our validation set during
training. This validation set contained 2,160 triples, with 535 having
high relevance, 142 medium relevance, 141 low relevance, and 1,342
non-relevant. The remaining 90% of triples from each relevance
level comprised our training set, with relevance degree distribution:
{ high: 531, medium: 134, low: 134, non-relevant: 1340 }.

Our results are reported on the 58 ARQMath-2 test topics that
were not used for any training purposes.

Sentence-BERT parameters. Sentence-BERT was trained for
50 epochs, choosing the model with an epoch obtaining the min-
imum training loss on a validation set. For candidate formulas,
the average token length in linearized MathAMR strings was 53.2
(f = 52.8) and for RawText with OPT was 96.3 (f = 141.6). As a
result, we used batch size 16 and maximum sequence length 128
for all representations other than RawText with OPT, for which we
used 256 tokens.

6https://www.sbert.net; distilbert-base-nli-stsb-quora-ranking model.
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using Spacy we move any punctuation (. , ! ?) from the end
of formula regions to after the �nal formula delimiter. For
example, in LATEX $a+b=c.$ becomes $a+b=c$.

(2) Replace formulas by identi�er tokens. To avoid AMR
parsing problems, we replace each formula in the input sen-
tence by a single token. For the example shown in Figure 3,
the LATEX formula G= + ~= + I= is replaced by EQ:ID, where
ID is an integer identi�er (for this example, EQ:766).

(3) Generate AMR graph. We use an embedding-based AMR
parser to generate the sentence’s AMR graph, the AMRLib5

“model_parse_xfm_bart_large” model [16]. We introduce a
new edge label ‘math’, used to connect a formula’s place-
holder node to its parent (see Figure 3 (a)).

(4) Replace formula token by formula OPT. AMR formula
id nodes are replaced by the corresponding root nodes of
formula OPTs, creating the MathAMR graph. This is shown in
Figure 3 (c) for the OPT shown in Figure 3 (b). To follow AMR
conventions, OPT edge labels are renamed from numbers to
‘opX’, where ‘X’ is the integer from the original OPT.

This is our �rst attempt at a unifying text and formulas in AMR
graphs, so we have kept our model simple. For example, we use
only OPT formula representations, even though prior research has
shown that also using SLT representations can be helpful [20, 21].

4 MATHAMR SENTENCE-BERT EMBEDDINGS
For retrieval, we embed linearized MathAMR graphs. MathAMR
graphs are linearized using a depth-�rst traversal, ignoring edge
labels for simplicity. For Figure 3(c) using the full OPT from Figure
3(b), the linearized MathAMR string is:

find-01 you thing general-02 solve-01 equal-01

math plus SUP z n SUP y n SUP x n imperative

MathAMR strings are embedded using Sentence-BERT [27], and
retrieval performed using Sentence-BERT’s cosine similarity imple-
mentation. To train Sentence-BERT models, we used the pre-trained
all-distilroberta-v1 model, with ARQMath-1 [34] topics and
the training topics from ARQMath-2 [22] used for �ne-tuning.

Formula search results in ARQMath are scored as high, medium,
low, or not-relevant. For training, we assigned a relevance score of
1 for high and medium, 0.5 for low, and 0 for non-relevant. Training
5https://github.com/bjascob/amrlib

data contained triplets of the form: (query formula, candidate
formula, relevance score).

For training, we employ a model and multi-task learning frame-
work in Sentence-BERT 6 used previously to detect duplicate Quora
questions by �rst minimizing the distance between positive pairs
and maximizing the distance between negative pairs using a con-
trastive loss function [5]. Then, the multiple negatives ranking loss
function [11] is used, which considers only positive pairs, minimiz-
ing the distance between positive pairs out of a large set of possible
candidates, making it well-suited to ranking tasks.

During training, in each epoch we compute the Spearman corre-
lation between the embedding cosine similarity and the label score
on the validation set. After training the model with a �xed number
of epochs, the model with the lowest validation loss is selected.

5 EXPERIMENTS
Test Collection and Training Data. For training we use all 74
assessed ARQMath-1 topics, along with the 12 training topics from
ARQMath-2. This provides a total of 21,411 training triples of the
form described in the previous section.

To create a validation set, we separated the triples for each rele-
vance rating (high, medium, low, non-relevant) into sets, and then
divided each triple set randomly, using a 90%/10% split. The 10%
splits were then combined and used as our validation set during
training. This validation set contained 2,160 triples, with 535 having
high relevance, 142 medium relevance, 141 low relevance, and 1,342
non-relevant. The remaining 90% of triples from each relevance
level comprised our training set, with relevance degree distribution:
{ high: 531, medium: 134, low: 134, non-relevant: 1340 }.

Our results are reported on the 58 ARQMath-2 test topics that
were not used for any training purposes.

Sentence-BERT parameters. Sentence-BERT was trained for
50 epochs, choosing the model with an epoch obtaining the min-
imum training loss on a validation set. For candidate formulas,
the average token length in linearized MathAMR strings was 53.2
(f = 52.8) and for RawText with OPT was 96.3 (f = 141.6). As a
result, we used batch size 16 and maximum sequence length 128
for all representations other than RawText with OPT, for which we
used 256 tokens.

6https://www.sbert.net; distilbert-base-nli-stsb-quora-ranking model.

receives the command (you) and what is requested: a thing that is the
general solution to the provided equation. The root of the OPT is an
unordered addition operator (U!Plus) applied to subexpressions from
exponentiation operators with ordered arguments (O!SUP).

To produce the combined MathAMR tree in Example 2.4(c), an
AMR tree was produced using a neural network after replacing the
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formula with identifier EQ:ID (see Example 2.4(a)). In Example 2.4(c)
the identifier node is replaced by the formula OPT with annotation
changes to match the AMR syntax. MathAMR was used to re-rank
answers to Math Stack Exchange questions that had been converted to
this representation (Mansouri et al., 2022c). MathAMR inserts formulas
at leaf nodes, but for longer passages one can imagine adding additional
information such as links between variables and their definitions.

Consulting sources in MathIR systems. As shown in Figure 2.1,
mathematical information retrieval systems require consulting sources
for directly observable information, analyze and annotate their contents
to generate additional information, and then organize this information
in an index for lookup, search, generating training data, and use in
evaluation.

Collection 
Index

R1. Query 

Request sources  
of information

 A2. Index 

Organize sources 
for retrieval

A1. Annotate 

Add information 
to sources

R2. Consult 

Examine and 
navigate sources
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Sources

Collection 
of  

Sources

Collection 
of  

Sources

Collection 
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Sources
Collection of 

Sources
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Collection 
of  
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Collection 
of  

Sources

Collection 
of  

Sources

Collection of 
Sources 
*Annotated

Queries 
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Figure 2.1: Tasks from Figure 1.4 for Representing Formulas and Text in an Index.
For context, query annotation and querying the index are shown greyed-out. Content
in sources is consulted, annotated to add information for text and formulas, and
then indexed for later use in retrieval systems and system evaluation.

Unlike people, where we rapidly alternate between consulting and
analyzing/annotating sources when trying to recover information, for
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large-scale systems we break processing up into steps to support batch
processing. The design decisions made for each step are critically im-
portant. For example, word/sub-word and symbol vocabularies chosen
to represent source contents impact the reliability of visual or semantic
annotations and retrieval. We also cannot lookup or search using any-
thing that we omit from these vocabularies, e.g., if we remove frequent
words and symbols such as ‘the’ and x to save space.

In the next section, we focus on annotating formulas and associated
text with visual and semantic representations to enrich collections, and
for later use in indexing.4

2.2 Annotating Formulas: Representations and Canonicalization

In terms of visual structure, the excerpt in Example 2.1 can be rep-
resented by a sequential graph of word and formula tokens shown in
Example 2.5. Each of the blue formula nodes/tokens contain a visual
structure representable using a Symbol Layout Tree (SLT) as shown for
the idf formula in Equation (1). The blue nodes for variable names in
the excerpt text each contain an SLT that can be found in the subtrees
of the idf SLT.

SLTs represent the placement of symbols on writing lines using
spatial relationships between symbols and nested writing lines. An SLT
is a directed, rooted tree with a parent and child in every relationship –
the idf node is the root node in our example. The idf and log functions
are single nodes with their characters grouped into tokens as seen earlier
in Example 2.3. For easier reading, we have shown adjacent symbols on a
writing line using undirected edges. The eight spatial relationships used
in SLTs are: adjacent-at-right, sub/superscript, prefix sub/superscripts

4Diagrams and other graphics are frequently used in math, but outside of our
discussion here; e.g., commutative diagrams can be expressed as a matrix-like SLT
container, but are really directed graphs with nodes/edges labeled by formulas:

A B

C

f

g◦f
g
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Example 2.5: Text tokens, formula tokens, and visual formula structure

Sequence of text (black) and formula (blue) tokens

Chapter 7: Illustrating math + text inputs
Robertson Paper (IDF) Example

Assume there are  N  documents in  the collection, and that term  occurs in  ti ni

Symbol Layout Tree (SLT) for Equation (1)

idf

t i
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log

divide

N

n i

sub

sub

idf ( )t

i

= log —

N

n

i

on the left side (e.g., n
2 C and 235U), inside (e.g.,

√
x), and above/below

(e.g., N
Ni

).
In Example 2.1, one piece of missing information that we did not

annotate is the hierarchy of operations in the idf formula. While a reader
is unlikely to think about this consciously, interpreting the formula
essentially involves converting the SLT to an Operator Tree (OPT).
We saw previously that OPTs are (partial) semantic representation
giving an operation hierarchy. Example 2.6 illustrates this conversion
for the idf formula. In OPTs variables and other arguments appear at
the leaves, with operations above the leaves in internal nodes. While
SLTs are oriented left-right to reflect reading order, OPTs are oriented
vertically to reflect operation order. The order of operations is bottom-
up in the OPT with precedence decreasing away from the leaves, e.g.,
the ‘=’ used to represent a definition is applied last for our idf formula.

Operations appear directly above their arguments in an operator
tree. If arguments have different roles (e.g., N and ni in N

ni
) this is

captured by their left-right order below the operator. When argument
order is unimportant, arguments are normally arranged in reading
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Example 2.6: Translating a Symbol Layout Tree to an Operator Tree

idf

t i

=

log

divide

N

n i

sub

sub

idf ( )t

i

= log —

N

n

i

Symbol Layout Tree (SLT) Operator Tree (OPT)

Grey nodes in the SLT indicate parentheses removed in the OPT, where
they are redundant. SLT subscript edges and fraction line are replaced
by sub and divide nodes in the OPT.

order (e.g., per the SLT). In our OPT directed edges indicate ordered
arguments, and undirected edges indicate unordered arguments for ‘=.’

There are some subtleties with mapping formula appearance in an
SLT to the operations in an OPT. For example, we use a sub operator
to represent subscripted variable names. If we assume the intended
semantic, these could be replaced by exponent nodes. However, this
is not true in general, and so we map to a sub operator instead (e.g.,
X2 may be a Cartesian set product). Also, some operations without
symbols in SLTs are explicit in OPTs, e.g., xy represents the operation
x × y.

In general, we work with fixed operation sets and SLT mappings
when producing OPTs automatically using tools. In some cases this leads
to ambiguities or incorrect mappings. This is unfortunately unavoidable,
because the meanings of symbols are community and context-dependent,
and symbols are frequently redefined by authors for their own purposes.
Despite these challenges with conversion, we should note that some
state-of-the-art formula search engines use OPTs rather than SLTs for
search, because SLTs do not fully capture the operation hierarchy.

There has been recent progress in this space. For example, In one ap-
proach to translating SLT representations as shown earlier for Wikipedia
(Greiner-Petter et al., 2023), noun phrases associated with SLTs are



2.2. Annotating Formulas: Representations and Canonicalization 49

identified and then used in translating the SLTs to OPTs with addi-
tional information that allows computable functions to be recovered.
An augmented LATEX syntax represents this annotated OPT, which is
then translated to computable representations for Computer Algebra
Systems (Maple and Mathematica). Such semantically enriched formula
encodings for use in CAS and theorem provers have long been a goal
in the Mathematical Knowledge Management community (MKM), and
we anticipate that there will be strong renewed interest in this problem
moving forward.

SLTs and OPTs in code. Example 2.7 provides code representing the
idf formula SLT in LATEX, and two versions of the OPT in Python.
The LATEX is shorter because it represents only formula appearance.
Commands such as \frac helpfully suggest operations, but define only
the placement of symbols (e.g., above and below a fraction line). We
also see the LATEX subscript operator in this example (_).

For the OPT implementations, all implicitly defined or unspecified
operators and values from Example 2.1 must be provided to compute
values. For example, e.g., math.log() uses the base e, and the equals
operator becomes Python’s end-of-function-signature symbol (:). We
also add variables and data structures to hold input values for terms,
term counts, and the number of documents in our collection. The
function signatures require additional arguments missing in the left-
hand side of our OPT, because all values must be defined (e.g., for N
and term counts n).

The function is defined twice, first using built-in infix operators for
division (/) and lookup (e.g., n[i]) and a second time using functions
(idf_prefix). While both produce the same output, note that the first
version looks closer to the SLT, while the second matches the operation
hierarchy in the right-hand side of the OPT.5 idf values are assigned
to the intermediate variable idf_weight, and annotated with their
associated value of i and text term in the output.

In the output "document" has an idf value of log 100/100 = 0. This
5Infix operators provide argument layouts more similar to typeset formulas. This

may partly explain the popularity of languages with infix math operators vs. purely
prefix-structured operations (e.g., in idf_prefix() and Lisp).
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Example 2.7: idf formula in LATEX and Python code

LATEX: Symbol Layout Tree representation

idf(t_i) = \log \frac{ N }{ n_i }

Python: Two Operator Tree representations

import math
t_all = [ "inverse", "document", "frequency" ]
n_all = [ 2, 100, 20 ]
D = 100
def idf(i, t, n, N):

idf_weight = math.log( N / n[i] )
return( t[i], idf_weight )

# Prefix form: ops before args to match OPT RHS
def divide(a, b): return a / b
def sub(a, b): return a[b]
def idf_prefix(i, t, n, N):

idf_weight = math.log( divide( N, sub(n, i)) )
return( sub(t, i), idf_weight )

for i in range(len(t_all)):
print(i, idf(i, t_all, n_all, D))

OUTPUT: 0 (’inverse’, 3.912023005428146)
1 (’document’, 0.0)
2 (’frequency’, 1.6094379124341003)

is valid, as the term appears in all documents, and so doesn’t provide
any distinguishing information. "frequency" appears in 20/100 of the
documents, and has an idf less than half the value for "inverse", which
appears in only 2/100 documents. Note that without the log scaling,
"inverse" would have ten times the idf score of "frequency".

MathML: Presentation (SLT) and Content (OPT). For MathIR
systems and evaluation benchmarks, MathML is a file format commonly
used to represent SLTs and OPTs.6 In MathML, OPTs are normally

6https://www.w3.org/Math.

https://www.w3.org/Math
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defined without the additional context needed to compute values that
we saw for the Python in Example 2.7.7 SLTs are given in Presentation
MathML, and OPTs in Content MathML. Presentation and MathML
generated from the LATEX for our idf formula are seen in Example 2.8.

Example 2.8: MathML generated from LATEX using LATEXML

idf is undefined in LATEXMLa and so i, d, and f are treated as variables.

idf ( )t

i

= log —

N

n

i

times

t i

=

log

divide

N

n i

sub

sub

i d f

<math xmlns=“http://.../MathML”> 
  <mi>i</mi> 
  <mi>d</mi> 
  <mi>f</mi> 
  <mo stretchy="false">(</mo> 
  <msub> 
    <mi>t</mi> 
    <mi>i</mi> 
  </msub> 
  <mo stretchy="false">)</mo> 
  <mo>=</mo> 
  <mi>log</mi> 
  <mo>&#x2061;</mo> 
  <mfrac> 
    <mi>N</mi> 
    <msub> 
      <mi>n</mi> 
      <mi>i</mi> 
    </msub> 
  </mfrac> 
</math> 

<math xmlns=“http://.../MathML”> 
<apply> 
  <eq/> 
  <apply> 
   <times/> 
   <ci>i</ci> 
   <ci>d</ci> 
   <ci>f</ci> 
   <msub> 
     <ci>t</ci> 
     <ci>i</ci> 
   </msub> 
  </apply> 
  <apply> 
    <log/> 
   <apply> 
     <divide/> 
     <ci>N</ci> 
     <msub> 
       <ci>n</ci> 
      <ci>i</ci> 
     </msub> 
    </apply> 
  </apply> 
</apply> 
</math>

Presentation MathML (SLT) Content MathML (OPT)

ahttps://math.nist.gov/~BMiller/LaTeXML

7Some tools such as Maple and Mathematica provide MathML annotations and
values needed to compute values from Content MathML.

https://math.nist.gov/~BMiller/LaTeXML
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Being XML-based, the syntax is similar to the prefix representation
seen for idf_prefix in Example 2.7. Generally speaking, MathML
commands begin with a start and matching end tag for the command,
with a list of tags for arguments nested inside. All tags may also contain a
list of attributes, e.g., xmlns (XML namespace) or stretchy (controlling
the rendering of brackets). An example is the <apply> command in
Content MathML, where the first nested tag is an operator, and the
remaining nested tags are the operator’s arguments. MathML provides
types for arguments, including <mi> and <ci> for variable identifiers,
<mn> and <cn> for numbers. In Content MathML, defined operations
have predefined tags, and so log appears as <log/> in Content MathML
but as the identifier <mi>log</mi> in Presentation MathML.

The LATEXML tool used to produce Example 2.8 knows \log is an
operator, and inserts an invisible node in the Presentation MathML to
capture its application to the fraction using hexadecimal Unicode value
x2061. This symbol does not appear when this formula is rendered. In
contrast, idf is not a defined operation or function, and is broken up
into three variables in the SLT and Content MathML. In the Content
MathML, these variables are multiplied with each other and ti.

As discussed earlier, a fixed set of definitions must be used to convert
formulas in LATEX or Presentation MathML to Content MathML. This
means that in large collections inconsistencies such as those seen in
Example 2.7 are common along with the <cerror> tag for unrecognized
symbols and structures. If these interpretations not intended by their
authors are consistent in their representation, they still provide patterns
useful for retrieval and other information tasks.

Visual and spatial region-based formula representations. Let us now
consider some other visual approaches to representing formulas. For
raster (pixel-based) images symbol locations are unknown. However, we
can represent formulas directly as images, and compare formulas based
on image similarity (we will return to this in the next section).

We can also capture symbol layout in raster images using an XY-
cut tree, as shown in Example 2.9. XY-cut trees partition touching
pixel groups (connected components) by cutting at horizontal and
vertical whitespace gaps. The standard method strictly alternates the
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Example 2.9: Region-based spatial representations for formulas

XY-Cut Trees (left: Recursive, right: Standard)

1
2 y
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(b) Recursive X-Y Tree (c) Standard X-Y Tree

Figure 2. Recursive [15] and Standard [14] X-Y cutting of the expression:
1
2

y. Recursive X-Y cutting splits the image at the largest horizontal or
vertical projection gap at each node, while standard X-Y cutting alternates
in the vertical and horizontal direction, cutting at all projection gaps

Our retrieval method was inspired by the projection-
profile-based structural analysis methods of Okamoto et al.
[12], [13] for mathematical notation. It occurred to the
authors that 1) Okamoto’s et al.’s projection-based technique
may be understood as a variation of X-Y cutting algorithms
used to segment pages for document analysis and recognition
[14], [15], and 2) due to the two-dimensional arrangement
of symbols in mathematical expressions, X-Y trees for math
expressions would often differ significantly from those for
text regions, and 3) X-Y trees provide some invariance to
the scale and relative sizes of symbols, as they describe only
the topology (relative position) of regions in an image. This
suggested that one might meaningfully compare X-Y trees
for handwritten queries to those for page regions, and return
page regions with similar X-Y structure.

In our approach, candidate query match regions are ob-
tained using the (coarse) similarity between recursive and a
restricted (depth-two) standard X-Y trees for the query and
page regions, along with a simple edge distance feature (see
Section IV).

To avoid producing noisy trees, a threshold is often used to
filter narrow cuts. Cutting thresholds may be defined using
estimates for dominant character heights and widths [16],
[17]. We use a minimum cut width of 2 pixels for the two
top-level standard X-Y cuts performed on each region; in
our experiments handwritten expressions were written on
paper and then scanned, with very little noise remaining
after binarization.

III. IMAGE MATCHING: DYNAMIC TIME WARPING

Candidate regions are ranked by visual similarity, making
our approach a form of content-based image retrieval [18].
Early on we considered using a measure based on tree
edit distance to match query and candidate X-Y trees [19],
but abandoned this due to the computational cost involved.
Marinai et al. came to a similar conclusion in their work
on X-Y tree-based document image retrieval [20], where
originally they employed tree edit distance.

Using the University of Washington III Database [21],
we tried a number of different image distance metrics, of
which a form of Dynamic Time Warping (DTW) was most
effective [22]. The DTW metric that we use is the minimum-
cost alignment between columns of query and candidate
region images, after candidates are scaled so that query and
candidate image heights match (preserving the aspect ratio
of each). For the image columns, we use features similar
to those used by Rath and Manmatha [10] for spotting
words in historical documents. We first compute binary
pixel projection profiles for the top and bottom half of an
image, normalizing them by the image height so that each
projection value lies in the interval [0, 0.5]. Each column
is then represented by its values in the upper and lower
profiles (u, l). To reduce computational cost, we sub-sample
the upper and lower profiles, using the average upper/lower
half profile distances for every five columns (this value was
chosen empirically, again using the UW-III database). For
images with widths that are not a multiple of five, the
average value of the remaining columns is stored in the final
feature vector element.

Formally, the dissimilarity between the query and candi-
date feature vectors (FQ, FC) is given by D(|FQ|, |FC |), the
minimum cost alignment between the averaged projection
profiles.

D(i, j) = min

8
<
:

D(i � 1, j)
D(i, j � 1)

D(i � 1, j � 1)

9
=
; + d(i, j) (1)

d(i, j) = (u(FQ[i]) � u(FC [j]))2 + (l(FQ[i]) � l(FC [j]))2

(2)
where D(0, 0) = 0, D(x, 0) = 1 for 1  x  |FQ|, and
D(0, y) = 1 for 1  y  |FC |. The distance between a
pair of feature vector elements d(i, j) is the sum of squared
differences between the upper and lower projection values.
Unlike Rath and Manmatha [10], we do not constrain the
warping path, nor do we normalize the DTW distance by
the length of the minimum cost warping path. This is in
part because many of the regions to be compared against are
nested in the X-Y tree, and we do not mind penalizing longer
warping paths as a result. The complexity of the distance
computation is O(|FQ||FC |).

IV. DOCUMENT INDEXING AND RETRIEVAL

We apply recursive X-Y cutting to each document page
to be indexed. All nodes in the X-Y tree with fewer than 90
nodes and a depth of at least two are stored in the index.
This avoids indexing regions that have many more connected
components than common expressions [23] and expressions
that are very small (there at most four connected components
in a recursive X-Y tree of depth two). Note that we do not
make use of the directions of cuts.

Each region in the index is cut again using two standard
X-Y cuts: just one vertical and one horizontal cut (see

Pyramidal Histogram of Characters (XY-PHOC)

3

3

cutting direction, while the recursive version cuts the largest gap in
either direction (Ha et al., 1995; Nagy and Seth, 1984). Symbols can
be recognized or features computed from sub-images at nodes for use
in recognition and retrieval applications (Baker et al., 2010; Zanibbi
and Yu, 2011). A variant of XY-trees was used in one of the earliest
systems for parsing math formulas from images (Okamoto and Miao,
1991).8 XY-trees can also be produced from known symbols, e.g., by
cutting around symbol bounding boxes. They are also used to segment
document pages into regions, which was the original purpose.

For images where symbol locations are known such as in SVG or
PDF, or using symbol locations from OCR results, we can produce
additional spatial representations. For example, in the previous section,
we saw an example of this where line-of-sight graphs over symbols
were used to search handwritten and typeset math in video keyframes.
An alternative region-based spatial representation is the Pyramidal

8Cutting thresholds and rules avoid splitting symbols with multiple components
(e.g., ‘i’) and separate subexpressions from inside radicals (e.g.,

√
x).



54 Annotating and Indexing Sources

Histogram of Characters (PHOC), which identifies which symbols appear
in a fixed set of recursively partitioned regions. PHOC was originally
created for retrieving words in handwritten text (Almazán et al., 2014)
but can be generalized in a straight-forward way for representing two-
dimensional structures like formulas (Langsenkamp et al., 2022; Avenoso
et al., 2021; Amador et al., 2023).

As shown in Example 2.9, for the XY-PHOC representation the first
region contains all symbols in a formula. Other regions split the formula
into 2, 3, or more equal-size regions horizontally or vertically. Later
versions also used concentric ellipses or rectangles to better capture
symmetry (e.g., for x + y and y + x). The encoding is compact, using
one bit vector per unique symbol to record occupied regions.

Canonicalizing formulas and formula representation tables. Example
2.10 visualizes common ways to generalize variables and operations in an
OPT, which can also be applied to SLTs. Applying these transformations
reduces the number of unique formulas in a collection, making additional
formulas identical, and others more similar after these transformations
are applied. The process of reducing variation in representations is
known as canonicalization.

At the middle in Example 2.10 we number each unique variable
from left-to-right in the OPT, starting from 1. This type of numbering
for entities is known as an enumeration. ‘2’ for i is repeated because it
appears twice in the expression. We can use enumerations to capture
formula structure while ignoring variable names. For example, using
variable enumeration the pythagorean theorem expressed as either

x2 + y2 = z2 (2.1)

or
a2 + b2 = c2 (2.2)

has the same form:
1 2 + 2 2 = 3 2

. (2.3)

We can apply this change for both the SLT and OPT representations.
For formulas, canonicalization often involves normalizing symbols

and structures as well, e.g., replacing different names for the same
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Example 2.10: OPT Variable Enumeration and Symbol Types
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operation with a single name, or always ordering subscripts before
superscripts in SLTs (e.g., in LATEX or Presentation MathML). Another
normalization re-orders variable and constant names lexicographically
for operators with unordered arguments, e.g., to have both x + y and
y + x represented by x + y.

For MathML we often ‘flatten’ nested tags, such as repeated <mrow>
tags belonging to a single writing line and sequences of unordered
operations. Both of these transformations for <mrow> and <times> are
applied in Example 2.8, flattening a chain of <times> nodes into one
node in the Content MathML and removing <mrow> tags entirely from
the Presentation MathML.

At right in Example 2.10 we have an OPT with nodes replaced by
an assigned type for each symbol. I indicates identifiers (i.e., names)
for variables and operations/functions like the idf function identifier.
Note that identifier idf must represent an operation, because it is
an internal node in the OPT. Other predefined mathematical opera-
tions are labeled to indicate whether their arguments are (O)rdered
or (U)nordered. Among other uses, types can be used to permit or
constrain matches between constants, variables, and operations in two
formulas. More sophisticated typing schemes have been used, e.g., to
distinguish numbers from alphanumeric identifiers and greek letters,
and relational operations from set operations and arithmetic operations.

Canonicalization can remove unhelpful distinctions, however, too
much canonicalization can also remove meaningful differences. A com-
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mon compromise is to annotate all formulas with multiple representa-
tions stored in tables, including one table for the original encodings
(usually LATEX and/or Presentation MathML).

To annotate sources with different formula representations, each
formula encountered in a source is assigned a unique integer identifier.
Tables used to hold each formula representation are sorted by these
formula instance ids, so that one integer can be used to retrieve any
representation that we have produced. To save space, often the represen-
tation tables define only the unique formulas in each representation, and
we add a second lookup table. The lookup table is used to map formula
instance ids to unique ids, and the representation tables map unique ids
to detailed representations (e.g., canonicalized OPTs). This prevents
detailed representations for x or an isolated canonicalized enumerated
variable ( 1 ) from being stored millions of times.

Textual formula annotations: Math entity linking. We can also use
markup available in sources along with analysis tools to capture formula-
text relationships such as shown in Example 2.1 and Example 2.4.
Textual formula annotations can be used for a variety of information
tasks. For example, using formula symbol identifier descriptions as
features for automatically generating Mathematics Subject Classification
(MSC) subject codes (Schubotz et al., 2016). MSC is a collaboratively-
produced hierarchical classification scheme used to identify subject codes
for papers in math journals. Recent math-aware search engines have
also explored using annotated formulas as their collection, including the
math entity cards in MathDeck (Dmello, 2019) that connect formulas
to titles and descriptions from Wikipedia. Another retrieval system,
MathMex (Durgin et al., 2024) indexes formulas that appear with their
textual descriptions in a document.

When text annotations for formulas are not provided directly in
sources, Math Entity Linking (MEL) systems can be used to connect for-
mulas with their surrounding context. Context may include descriptions
for formulas and their symbols, other formulas defining symbols in a for-
mula, and external sources (e.g., linking formulas to Wikipedia pages).
We note that symbols like x and λ are frequently re-defined within a
single paper, leading to multiple definitions (Asakura et al., 2022). This
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complicates the task of coreference resolution, where multiple references
to the same mathematical symbol or entity need to be identified and
disambiguated when symbols are redefined (Ito et al., 2017).9

Most early methods for MEL were rule-based due to the limited data
available for training machine learning models. One of the earliest textual
formula annotations linked math expressions to their corresponding
Wikipedia page (Kristianto et al., 2016b); unfortunately not all math
expressions have Wikipedia pages, and context provided in the document
where a formula appears is likely more relevant and/or accurate for the
formula. Another early system annotated formulas with descriptions
and relationships to other formulas in dependency graphs (Kristianto
et al., 2017). Textual descriptions are extracted using an SVM-based
model to link description nodes to formulas and symbols (Kristianto
and Aizawa, 2014). References between formula nodes are captured
through structural matching of formula sub-expressions.

Later systems including MathAlign (Alexeeva et al., 2020) focused
on textual annotations within the documents where formulas appear.
There has also been work on automated variable typing, where pre-
defined mathematical types (e.g., integer, real) are assigned to variables
in mathematical formulas using sentences containing descriptions where
a symbol appears (Stathopoulos et al., 2018).

The SymLink shared task at SemEval 2022 (Lai et al., 2022) re-
quired extracting math symbols with their textual descriptions from
LATEX source files collected from the arXiv. The main task requires this
to be performed within a LATEX paragraph. First, all text spans (contigu-
ous excerpts) containing math symbols and descriptions are identified,
and then symbols are matched with their descriptions. The SymLink
dataset provides more than 31,000 entities and 20,000 relation pairs,
which allowed modern machine learning models (e.g., BERT-based) to
be proposed.

Math entity linking and other forms of annotating text-formula
relationships are important directions for future research. They are chal-

9The Math Identifier-oriented Grounding Annotation Tool (MioGatto) (Asakura
et al., EasyChair, 2021) provides a tool for annotating different roles for formulas
and symbol, linking identifiers to pre-defined math concepts extracted from the
document.
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lenging because incorrect detections can corrupt intended meanings, and
because mis-detections can lead to cascading errors. This fragility and
the computational cost of constructing explicit semantic annotations are
partly responsible for the popularity of dense embedding models, which
use language statistics to capture associations and usage patterns for
tokens/formulas/passages etc. However, information-wise embeddings
capture associations rather than discrete entities and relationships, and
we expect that combining embeddings with constructing graph-based
representations will prove beneficial in the future.10

2.3 Indexing Formulas and Text

Indexing is a critical component for both the implementation and eval-
uation of mathematical information retrieval systems discussed in the
later sections of this work. One might consider indexing to be mostly a
brute-force compilation and reorganization of source data in a collec-
tion. In fact, there are quite a number of important encoding details
(e.g., character encodings, file formats, and their myriad variations),
organizational and retrieval unit design decisions, and resource con-
straints such as speed and storage requirements that must be carefully
addressed if downstream model and evaluation implementation efforts
are to be reasonable and effective. This is especially true for multimodal
indexes used for math IR systems, where we may have multiple data
representations for text, formulas, and their combination.11

Figure 2.1 illustrates the main tasks for indexing sources. When we
talk about indexing, we’re actually referring to a process that consults
sources and annotates sources with additional information, and then
creates a collection index. We discussed annotating formulas in the pre-
vious section, but annotations are needed for text as well. For example,
if we plan to use dense retrieval with sentences, we first need to record
where sentences are found in sources, e.g., in a table containing pairs of
start and end character positions. We often also create tables to hold
metadata such as authors and logical regions such as titles, so that
these may be quickly accessed or searched separately.

10There is related research in knowledge graph construction (Zhong et al., 2024).
11In our experience, implementing new indexing tools is a substantially larger

effort than implementing retrieval and machine learning models using indexed data.
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The collection index contains data structures for organizing both
sources and their contents, along with search indexes that organize
source contents by patterns generated from sources and their annotations.
More concretely, indexing involves:

1. consulting source text and formulas to generate dictionaries for
fast lookup and analysis of their contents,

2. adding information to sources through additional dictionaries
(e.g., formula locations and representations), and

3. generating inverted index and/or dense vector index files from
source contents and annotations.

Locating and extracting formulas from sources. We often start by
identifying formulas in our sources. Videos and PDF documents generally
do not identify formula locations, and so we create a table mapping
integer formula identifiers to their locations. An example is the Page-
Region-Object tables used for ACL anthology PDFs in the MathDeck
system (Amador et al., 2023). Each detected formula has an entry with
integer source and page ids, and two x-y coordinates for the top-left and
bottom-right corners of a bounding box containing the formula. Formula
representation tables are then created from the detected formulas.

For text documents with demarcated formulas (e.g., LATEX and
HTML with MathML), we extract encodings for formulas and construct
the formula representation tables needed. For some applications such
as generating MathAMR trees or training transformer models such as
BERT, it can be helpful to replace formulas by an identifier, e.g., <math
[...] </math> becomes EQ::42.

Vocabularies for text and formulas. A simple but critical annotation
are vocabularies. A vocabulary defines a set of unique objects/symbols
seen in our collection including words, XML tag types, LATEX commands,
and other math symbols (e.g., in unicode). Vocabularies for text and
formulas may be stored separately, together, or both. Different formula
representations will generally have their own separate vocabularies. In
general we compile all unique ‘words’ for each vocabulary, prune some
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of them (e.g., removing rare ‘words’), and then enumerate vocabulary
items for use in table lookups.

For formulas, in addition to individual symbols, we often need
subexpressions or substructures in our formula vocabulary, e.g., for
formula search. Example 2.11 shows two common techniques for this,
using unrooted and rooted paths. The example at top shows directed
paths in an SLT. Shown are all unrooted paths of length 1, and four paths
of length 2. In the example at the bottom, leaf-root paths that start from
leaves of an OPT are shown, and we show all such paths for the left-hand
side of the idf formula. Note that each OPT leaf-root path is a valid
subexpression with one argument and one or more missing arguments
and operations, while a number of the SLT paths capture visual patterns,
but are not valid subexpressions (e.g., ‘(‘ → ‘t’). Both types of paths can
be extracted from SLTs and OPTs.12 One constraint is that indexing too
many paths for a formula representation increases index size, and can
lead to slow retrieval times. So our choice of substructure vocabularies
such as path types requires careful consideration.

For example, we can construct a text token vocabulary for use with
BM25, and a variety of path vocabularies to search OPTs, SLTs, and
additional canonicalized versions described in the previous section.

Inverted indexes for sparse retrieval. Among other things, vocabular-
ies define the patterns that can be used to retrieve information directly
from index tables. This type of pattern lookup in an index is often
called ‘sparse’ retrieval, because a standard query can be represented by
a largely empty vector with bits or counts representing the vocabulary
terms in the query (Zobel and Moffat, 2006). BM25 is a sparse retrieval
model, as are formula search models that retrieve formulas from tables
using paths. A table that maps vocabulary terms to lists of documents,
formulas or other object identifiers is called an inverted index.

As an alternative to inverted indexes, people have also used substi-
tution indexing trees, originally developed for unification and matching
of predicates in automated theorem proving (Graf, 1995). These trees

12Anchoring paths only at the root of an SLT or OPT is generally ineffective; many
helpful patterns are missed. Leaf-root paths on SLTs are an interesting opportunity.
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Example 2.11: SLT and OPT paths for the idf formula
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group OPTs or SLTs with shared structure using a hierarchy of symbol
and operation replacements and enumerated variables (Kohlhase and
Sucan, 2006; Schellenberg et al., 2012). Substitution trees represent
the complete set of possible operation sequences that produce concrete
formulas in a collection at their leaves. Retrieval finds the most similar
formulas in the substitution tree through transformations of the query.

Vector embeddings for dense retrieval. For dense retrieval patterns
used for search are transformed into embedding vectors, and retrieval
involves finding some k most similar items based on the geometry of
the embedding space (e.g., using the cosine of the angles between the
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vectors). This may be for tokens, sentences, formulas, paths, or other
objects. A common approach for generating embedding vectors is having
a neural network play an imitation game where we hide tokens (i.e.,
mask them) in a text sequence or node/edge labels in an input graph
(e.g., an OPT or SLT), and have the network produce likelihoods for
every alternative in a vocabulary. During training, this game is played
repeatedly using a training data set, with network weights updated to
improve estimates.

Masking and other self-supervised learning tasks capture a language
model reflecting the likelihood of objects appearing in similar contexts.
The often large amounts of computation required is somewhat con-
fusingly referred to as pre-training because network weights are not
optimized for retrieval or other tasks aside from the learned probability
estimates.13 To further improve dense retrieval performance, additional
learning to rank tasks are run, which require generating ranks for indi-
vidual sources (point-wise), comparing two items at a time (pair-wise)
or revising entire rankings (list-wise). This training directly for retrieval
or other ‘downstream’ tasks after learning a language model is known
as fine-tuning of network weights for a specific task.

Learning to rank requires test collections where sources relevant to
specific queries have been identified, as described in the next section;
normally relevance labeling is at most partially automated (Faggioli et
al., 2024). As a result, data available for learning-to-rank is often much
smaller than for language model learning. In contrast, large amounts
of pre-training data can be created by randomly hiding labels or other
random manipulations without human involvement.

After the embedding network has been trained, items to be indexed
are converted to embedding vectors and stored in one or more tensors.
Normally we also produce a companion dictionary mapping the tensor
rows to integer identifiers for the objects that have been embedded, so
that we can recover the passage, word, formula or other object they
come from.

13‘Pre-trained’ language models often produce surprisingly strong retrieval base-
lines. For example, symbols or sub-expressions that look quite different may have
similar vectors if they are often used in similar contexts, because when masking
these, one or the other will be more likely than other vocabulary items.



3
Math Retrieval Tasks and Evaluation Metrics

In this section, we introduce the retrieval tasks considered in this mono-
graph. There are two task types that we consider: search tasks requiring
a ranked list of sources from a collection, and question answering tasks
(QA) requiring a single response that may or may not reference sources.
We categorize these tasks by expected responses below.

Search Tasks: Return ranked list of sources

1. Formula search: ranked formulas
2. Math-aware search: ranked sources or excerpts with formulas

and text (e.g., passages)

QA Tasks: Provide question answer possibly with justifications and/or
step-by-step solutions

1. Multiple choice: selection from provided alternatives
2. Value: numbers or strings, possibly in data structures (e.g.,

lists)
3. Formula: formulas or short programs for computing answers

(often paired with a value response)
4. Open response: free response with formulas and text

63
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While we have selected these tasks to focus our discussion, this is
by no means the exhaustive set of information tasks required or studied
for Math IR. For example, other pertinent tasks include math entity
linking (Kristianto et al., 2016b), tasks related to theorem proving
such as natural language premise selection (Ferreira and Freitas, 2020b)
(see Appendix B), and extraction and annotation of formulas that are
not explicitly demarcated in collections (e.g., for handwriting, Truong
et al., 2024, and PDF documents, Shah et al., 2021). Additional tasks
are described in other surveys of mathematical information retrieval
(Zanibbi and Blostein, 2012; Guidi and Sacerdoti Coen, 2016; Dadure
et al., 2024).

3.1 Evaluation Overview

Figure 3.1 visualizes the people, data, and processes used to create
retrieval task data and evaluate search and QA tasks. The figure illus-
trates an important but easy-to-miss fact: it is people and not formal
definitions, systems, or algorithms that define retrieval effectiveness,
and the target responses that retrieval systems are designed to produce.
More specifically, these roles are:

• Users: Realistic search queries and questions come from human
users either directly or from available data (e.g., in query logs).

• Assessors: Identify relevant sources for search queries, and define
correct question answers.

• Designers/Researchers: Collect queries, results, assessments,
and set the measures and procedures that quantify performance.

As a result, a chosen evaluation design and the human actors within it
influence the data produced, along with any observations and conclusions
made from this data. It is important to consider this when reviewing
evaluation results in the work of others, and when designing our own
evaluation frameworks and experiments.

This dependency of system evaluation on people is unavoidable. The
tasks retrieval systems perform are motivated by human information
tasks, which system designers approximate through observation and then
formalization within a system design. Also, large data sets recorded from
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Figure 3.1: People, Data, and Methods in Evaluation (expands Figure 1.4). Search
tasks require rankings sources in a collection, while QA tasks require a single response.
System information tasks are in gray/hidden: systems are used to sample sources for
grading search relevance, but are generally unused for QA evaluations.

users and sources authored by people are human data. Effectiveness
is measured by how well system outputs imitate human responses
collected by researchers. For systems utilizing machine learning, desired
outputs are obtained by repeatedly playing imitation games scored by
the distance between model outputs and human responses. For these
reasons, people determine or constrain nearly every aspect of system
design and evaluation.1

For search tasks, systems also have a direct role in evaluation aside
from producing results, sometimes even for their own evaluation. This
is because we normally pool sources returned from multiple systems

1This is a feature, not a bug.
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before assessors make relevance judgements. This does introduce bias in
evaluation, because only items returned by systems used in pooling are
assessed. However, most collections are too large to proceed any other
way, and we can choose metrics to mitigate the effects of this bias on
evaluation outcomes.

Evaluation-wise, we focus here on the effectiveness of query results
as measured offline using test collections. A test collection consists of:

1. Collection of Sources: sources to be searched for search tasks;
optional, usually missing for question answering tasks.

2. Topics: queries to run. For search this also includes query infor-
mation need descriptions and criteria for relevant sources. For QA
questions may include context and/or explanations for answer
requirements.

3. Responses: includes pooled sources with relevance judgements
for search tasks, and question answers for QA tasks.

4. Protocol: metrics and methods for producing evaluation data.

In addition to being aware of the roles people play in retrieval evaluation,
it is important to remember test collections provide a sample, and not
all possible queries and results for a task. As such, the data that we
collect provides evidence for hypotheses (e.g., system A performs better
than B for metric M), and not proof (Fuhr, 2017). With that said,
many valuable things can be learned about system behaviors, evaluation
data and frameworks, and even retrieval tasks themselves using test
collections. They allow us to address questions using direct observation
in addition to observations reported by others.2

Briefly returning to our ‘jar’ model for information tasks in Section
1 (Figure 1.3) using test collections for evaluation and related experi-
ments is an important information synthesis task that involves applying
information to communicate new information sources such as research
papers. Reporting informative evaluation data requires significant effort:
careful checking is needed at every step of data collection, measure-

2Galileo expressed concern about getting information primarily by following
entries in book indexes rather than experimentation (see Duncan, 2021, pp. 9-10).
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ment, analysis, and reporting. Test collections help ease this burden by
providing standard data sets and methods for system comparison.

Efficiency metrics. While discovering new retrieval models and
understanding their information use and effectiveness is generally the fo-
cus of IR research, for large collections and real-world systems efficiency
is also very important.3 Metrics such as mean query response time
(MRT , i.e., average seconds/query), query throughput (i.e., average
queries/second), and index size on disk and in memory are used to
evaluate system speed and resource utilization. Efficiency metrics are
also needed to check tradeoffs between time, space, and effectiveness.

3.2 Retrieval Tasks: Search and Question Answering

Some example formula search queries and results are shown in
Example 3.1. Top-to-bottom, the examples include a formula used
directly as a query,4 a formula query with wildcard symbols that can be
replaced by subexpressions, and a contextualized formula search query
where the context the formula appears is included in the query, and
returned formulas include their contexts.

The concrete and wildcard formula queries are symbolic similar-
ity searches, with relevance determined by just formula appearance
(SLTs) and/or operations (OPTs). This type of query is motivated by
information needs including refinding a previously seen formula in a
document collection, or browsing for similar formulas. Wildcards add
boolean constraints to queries, as non-wildcard symbols and structures
are ideally the same or as similar as possible in the formula returned.
Wildcard names can also indicate repetition, e.g., for wildcards ?f, ?v,
and ?d in the example.

Contextualized formula queries include the context where a formula
appears, incorporating the types of formula-text interactions described
in the previous section. Here relevance is determined by both the formula
and the text within which it appears. For example, two instances of the
formula X2 are distinct if in one context X is defined as a number, and

3Quoting James Cordy: “Get it right, then make it fast.” We add a proviso: “...but
have a fast enough version for debugging and study, e.g., using a small collection.”

4A ‘concrete’ query.
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Example 3.1: Formula Search Tasks

Formula similarity search
Result

Query 1 2 3 4 5

y = a+bx
b−x y = a+bx

c+x y = a + bx y = a−bx
c−x y = a+bx

x+c g(x) = x
x−a

Formula similarity with wildcards (?w) (Aizawa et al., 2013)

Query Result

?f(?v + ?d) − ?f(?v)
?d 1 g′(cx) = lim

h→0

g(cx + h) − g(cx)
h

... ...

Contextualized formula search
Query Result
I have the sum

n∑
k=0

(n

k

)
k

know the result is n2 − 1 but I don’t
know how you get there. How does
one even begin to simplify a sum like
this that has binomial coefficients.

1 . . . which can be obtained by manip-
ulating the second derivative of

n∑
k=0

(n

k

)
z

k

and let z = p/(1 − p) . . .

2 Yes, it is in fact possible to sum this.
The answer is

n∑
k=0

(n

k

)(m

k

)
=

(m + n

n

)
assuming that n ≤ m. This comes
from the fact that . . .

in the other it is defined as a set, whereas using symbolic search over
SLTs, both formulas have the same representation.5

5For OPTs, the nodes for the variable and squaring operation may or may not
differ, depending upon how the collection is created (see previous section).
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Examples of math-aware search and mathematical question answer-
ing tasks are shown in Example 3.2. We first show an ad-hoc math-aware
search task with queries that include formulas and text. Ad-hoc refers
to the fact that queries can vary greatly, and may include patterns that
are not proper phrases or sentences (e.g., keyword queries, or the query
‘x2 + 5 = 30 x value’). In the example shown, a full question post
from the Community Question Answering (CQA) platform Math Stack
Exchange (MSE) is used as a query, and a collection of MSE answer
posts is searched.

The bottom portion of Example 3.2 shows two question answering
tasks. The first is an open response to an MSE question post, that was
generated using GPT-3 (Mansouri et al., 2022a). The second shows
math word problems taken from two test collections. In both cases, the
result should be an answer with two parts: an equation that can be
used to compute the solution, and the solution value, here a number
and a number list. Multiple choice questions are also common. These
require choosing from a small number of provided alternatives (e.g., 4
for a fourth alternative (d) None of the above). Research-wise, multiple
choice questions allow varying the complexity of information associated
with questions and alternative responses, while constraining system
outputs to an alternative from a small set. In some collections questions
and multiple choice answers include visual elements such as tables or
diagrams. Using multiple choice questions makes it possible to study
this type of multimodal question answering without needing to change
the response format.

3.3 Creating Test Collections

An important first consideration is where to collect queries from, and how
to select which queries to include. As our goal is evaluating performance
on real-world tasks, it is usually best if search queries and questions
come from real-world users and use cases. For example, for search tasks
topics may come from query logs or community question-answering
websites. Questions on standardized tests such as the Math SAT are
commonly used for question answering. In some cases, topics generated
by the test collection creators are designed to explore specific scenarios
for new features (e.g., wildcards in formula search queries).
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Example 3.2: Math-Aware Search and Question Answering Tasks

Math-aware search (ad-hoc retrieval)
Query Result
I have the sum

n∑
k=0

(n

k

)
k

know the result is n2 − 1 but I don’t
know how you get there. How does
one even begin to simplify a sum like
this that has binomial coefficients.

1 . . . which can be obtained by manip-
ulating the second derivative of

n∑
k=0

(n

k

)
z

k

and let z = p/(1 − p) . . .

2 Yes, it is in fact possible to sum this.
The answer is

n∑
k=0

(n

k

)(m

k

)
=

(m + n

n

)
assuming that n ≤ m. This comes
from the fact that . . .

Math Question Answering (Mansouri et al., 2022a)

Query Result

What does it mean for a matrix
to be Hermitian?

A matrix is Hermitian if it is equal to its trans-
pose conjugate.

Math word problems

Result
Query Equation Answer

Sarah has 5 pens, David has 3 pens. How many
pens do they have?

x = 5 + 3 8

Find two consecutive integers whose sum is 7. x + (x + 1) = 7 3, 4

From MathQA (Amini et al., 2019) & Dolphin18K (Huang et al., 2016)

The final topics sets ideally provide a representative sample for the
task being evaluated, while including some diversity in topics so that
different system capabilities are tested. Diversity is sometimes addressed
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using separate sub-tasks for a test collection. For math retrieval, criteria
to consider include mathematical subjects covered, modalities in queries
and responses (e.g., formulas, text, diagrams), and the complexity or
mathematical difficulty (e.g., target grade levels).

Train topics, test topics, and cross-validation. Normally a test collec-
tion divides topics into training and test topics, so that systems can be
compared using the same test topics, while being tuned using a separate
group of training topics. This way, all systems take the same ‘test,’ with-
out having seen the test search queries/questions previously (i.e., not
‘cheating’). This allows us to observe and compare the information and
task generalization captured in system data structures (e.g., network
weights) and algorithms for the same unseen topics. Systems should
never be tuned on test topics when reporting test results. Published
benchmarks for test collections are results for test topics by default.

Training topics are provided for tuning system parameters. To ob-
tain a more detailed characterization of system behavior using multiple
train/test splits, cross-validation can be used, and average metric values
across splits reported, ideally along with a standard deviation to char-
acterize variance (roughly, consistency across splits). All train and test
topics may be combined before generating splits for cross-validation, but
it must be made clear which topics are used and how train/test splits
are produced (e.g., leave-one-out treats every topic as the test sample
separately; 5-fold cross validation randomizes the topic order, and then
makes 5 equal splits, with each split being rotated as the test split, etc.).
While cross-validation provides more robust evaluation measures, it is
important to again note that official benchmarks for test collections are
computed for unseen test topics, and in this case test topics cannot be
used in training.6 Unless noted otherwise, for benchmarking test topics
are scored just once, without cross-validation.

Test collections sometimes include smaller train/test topic sets used
primarily for development, and/or to make use of the collection easier
for those new to a task. These can also be safely produced from small
subsets of training topics (never test topics), and are very helpful for
fast testing and debugging.

6This can be easy to miss amongst multiple data set versions. Care is needed.
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Responses: Pooled relevance judgments for search tasks. For ques-
tion answering tasks, answer data is often compiled from available
sources by those creating the test collection. In contrast, for search
tasks relevance judgements are needed before a test collection can be
released, as they are required to measure effectiveness. The most com-
mon approach is shared tasks in which multiple participants run their
systems on provided search topics, and then share the outputs of their
runs for pooling as illustrated in Example 3.3. After these assessments
have been collected, relevance judgements are used to score participants’
systems, and the relevance judgements produced are included when the
final test collection is released.7

Example 3.3: Creating query relevance judgements (QRels)

Topics Collection

Shared Task

Participants

Ranked 
Results by 
Proposed 
System

Selecting Top-K 
results for pooling

Trained 
Assessors

Relevance
Definition

QREL 

Systems

In a shared task, all participants have their system(s) search the
same collection of sources, and use the same topic queries. Assessors
assign relevance scores to pooled sources, and these assessments are

7Ideally, the system runs (ranked responses for every topic by each participating
system) are also included in the test collection for later study and comparison.
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stored in qrels files (quantitative relevance assessments).8 Shared tasks
are run frequently at conferences including TREC (Text REtrieval
Conference), CLEF (Conference and Labs of the Evaluation Forum),
NTCIR (NII Testbeds and Community for Information access Research),
and FIRE (Forum for Information Retrieval Evaluation).

Example 3.4 illustrates relevance assessments using a binary scale
(i.e., 1 is relevant, 0 non-relevant), and graded relevance where an ordinal
scale of three or more values is used, e.g., Non-relevant and Low,
Medium, High relevance. Graded relevances can be easily converted to
binary relevances by thresholding. For our graded relevance example, we
might map Non-Relevant, Low (0,1) → 0 (non-relevant), and Medium,
High (2,3) → 1 (relevant). We also see an example of unknown relevance
for a formula search in the search results from system A at top (rank 3).
Model A retrieved a formula that was not included in the pool created
during the shared task, and so it is missing in the published qrels file.
We will come back to this later in the section.

Normally measures of agreement between assessors are reported
for search test collections. This is done by providing the same set of
topics among assessors and comparing their assessments with agreement
measures such as Cohen’s Kappa coefficient. Properly training assessors
can help increase agreement among assessors. For instance, in ARQMath-
3 (Mansouri et al., 2022a), for the formula search task, the Cohen’s
Kappa value increased from 0.21 to 0.52 from the first training to the
last (third) training session.

Relevance assessment and tools. Assessing relevance for math search
is inherently challenging. As discussed in earlier sections, a person’s
mathematical expertise influences their perception of relevance: a highly
technical document relevant to an expert might be irrelevant to someone
with a basic understanding of math. It is necessary for assessors to
have an appropriate mathematical background and to be trained for
each search task that they will assess. They should be provided with
well-defined relevance definitions, including instructions on how to

8The standard qrels format is from TREC (https://trec.nist.gov/data/qrels_e
ng).

https://trec.nist.gov/data/qrels_eng
https://trec.nist.gov/data/qrels_eng
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Example 3.4: Relevance Assessments

Binary and unknown relevance (?)

Model A Model B
Rank Formula Relevance Formula Relevance

1 y = a+bx
c+x 1 g(x) = x

x−a 0
2 y = a + bx 0 y = a+bx

c+x 1
3 y = a−bx

c−x ? y = a+bx
x+c 1

4 y = a+bx
x+c 1 y = a+x

b+cx 1
5 g(x) = x

x−a 0 y = a + bx 0

Graded relevance (0-3: Non-, Low, Medium, High)
Query Result Relevance
I have the sum

n∑
k=0

(n

k

)
k

know the result is n2 − 1
but I don’t know how you
get there. How does one
even begin to simplify a
sum like this that has bi-
nomial coefficients.

1 . . . which can be obtained
by manipulating the sec-
ond derivative of

n∑
k=0

(n

k

)
z

k

and let z = p/(1 − p) . . .

(3) High relevance

2 Yes, it is in fact possible
to sum this. The answer is

n∑
k=0

(n

k

)(m

k

)
=

(m + n

n

)
assuming that n ≤ m.
This comes from the fact
that . . .

(0) Non-relevant

distinguish between different relevance degrees. It is also a good idea to
allow assessors to decline assigning a score when they are very uncertain,
or to consult an expert.9

9In our own work, a math professor acted in this role.
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Example 3.5 shows the Turkle interface used for contextualized
formulas search in the ARQMath shared tasks. Each assessor has an
account, and is assigned topics to evaluate. Relevance data is compiled
automatically and converted to qrels files by the system. In the example
we see a query formula in its MSE question post on the left, and
two formulas in their MSE answer posts taken the assessment pool.
Assessors were allowed to view the question threads that queries and
results appeared in using provided links. On the right we see buttons
for the 4-level graded relevance scores, and two additional buttons for
system failure (e.g., when a result is unreadable), and when an assessor
was uncertain how to rate the result. A box for comments was also
included, and was primarily used to explain why assessors selected
“System failure” or “Do not know.”

An important practical consideration is the time and effort assessors
require to generate answers or judge relevance for search results. For
example, in ARQMath the contextualized formula search task had an
average assessment time of roughly 35 seconds for each formula query
and candidate formula. Using the same MSE question/answer posts
there was a second answer retrieval task, where assessors had to decide
how well an answer addressed a given question. Assessors found this
task much more difficult, and average assessment time was nearly twice
as long as for formula search: 64 seconds per answer.

Responses: Question answers for QA tasks. Unlike search tasks, QA
test collections may be created without the participation of QA systems
(i.e., shared tasks are not needed to create QA test collections). A list
of QA test collections is provided in Section 6. Answers are created,
annotated, and checked in a variety of ways, with differing levels of effort
for assessors and test collection creators. For example, LATEX \boxed{}
commands already identify final answers for the AMC and AIME QA
data sets, while the Amazon Figure Eight annotation platform was
used to manually select operations and arguments from provided lists
for MathQA. Other collections have assessors generate answers for
questions directly (GSM8k), or use machine learning techniques to auto-
matically segment final answer values from available CQA answers (e.g.,
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Example 3.5: Relevance assessment for formula search

ARQMath Turkle assessment interface (Formula Search). Left: for-
mula query highlighted in a question post. Right: two question posts
containing the same formula. Assessors consider posts when deciding
relevance for each pooled formula. They could also check question
threads associated with posts using the ‘Thread’ links.

from answers posted in YahooAnswers using SVMs for Dolphin18K).
For AQuA-RAT, crowdsourced workers were used to modify questions
(e.g., changing variable values) and provided rationales as needed from
available GMAT and GRE test questions.

In addition to final answers, some QA test collections include step-
by-step answers or textual annotations. For machine learning models,
some of this textual data associated with training topics can be used
to improve system answers by providing additional contextual data/in-
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formation, and used to improve generated explanations for answers or
improve responses to queries and comments in interactive discussion
(e.g., for large language models).

In all QA datasets, there are also post-processing steps to normalize
the format of answers, to avoid missing correct answers. Where people
are used to generate and annotate answers, the same concerns regarding
assessor training, consistency, and effort as mentioned for search tasks
apply here as well.

3.4 Evaluation Metrics

To be focused in their purpose, in addition to collecting queries, re-
sponses, and assessments (e.g., in qrels, or target answer files) test
collections also need to define the measures of success and how they
are computed. This way people can use test collections independently,
and compare their results in a consistent, meaningful way. We want our
measures to be automated for consistency and to avoid error as well.

Selecting appropriate evaluation metrics is subtler than it may seem
at first glance. For example, consider the top-5 retrieval results from
two formula search models in Example 3.4. Which system would you
prefer? We might prefer model ‘A’, because the first result is relevant.
However, for some information needs we may prefer model ‘B’, because
more relevant formulae are retrieved. This is a simple example of how
information needs influence which effectiveness metrics are better suited
to an individual topic or task.

As another simple example, suppose that we ask a QA system to
‘provide the value of π’, and that we have stored the answer as
3.14159. If a single value is expected, we need to define the required
number of digits for a response to be scored as correct. We might accept
3.14, but probably not 3; if more digits of π are returned than in our
stored answer, we probably don’t want to penalize this either. The
differences in answer formats mean that measures of Accuracy for math
QA systems include normalizations of target responses and provided
answers, which include tolerances and constraints to avoid penalizing
correct answers.10

10This often loses detail, e.g., π is irrational, with infinite decimal places.
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Some protocols for evaluation are more complex, such as the use of
visually distinct formulas for evaluating formula search in ARQMath
(see Section 4), which impacts pooling for assessment and the scoring of
search results. To help people using test collections, normally provided
evaluation scripts are used to run evaluation protocols automatically.

Search metrics. Table 3.1 presents metrics used to evaluate search
effectiveness using relevance assessments (i.e., qrels data). Note that
while most metrics are defined for a single query, they are often reported
using their average value for a set of test queries. It is helpful when
standard deviations from the mean are also reported, to characterize
how much the metric values vary across queries. Most common metrics
use binary relevance values for their computation. As described earlier,
we can binarize graded relevance values to compute these metrics.

There are trade-offs that occur between some of these metrics. A
classic example is the tradeoff between recall and precision: the more
items we return in search results, the more likely that relevant items will
be included, which tends to increase recall metrics. However, returning
additional items tends to produce more non-relevant than relevant items,
which decreases precision metrics. Intuitively, this is because to retrieve
more items, patterns used for matching need to be less constrained,
making them more likely to match non-relevant sources. In theory, we
can return the entire collection for all queries to obtain an average recall
(R@hit) of 100% because all relevant items are returned. However, the
average query precision (P@hit) will be close to 0%, because few/none
of the returned sources are relevant for an individual query.

Another important trade-off occurs when systems are designed to
maximize mean reciprocal rank (mRR), the average inverse rank of the
first relevant hit (1

r ), or precision@1, the percentage of queries with
a relevant source at rank 1 (i.e., at the top of the ranking). Doing
this often reduces metrics for effectiveness over a full ranking such as
mean average precision (mAP ) or normalized discounted cumulative
gain (nDCG). This occurs because using retrieval patterns and scoring
narrowly focused on matching high relevance sources can bias the model
away from capturing rarer and/or partial relevance signals.
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Table 3.1: Search Metrics. By default, sources not in relevant set R are in non-
relevant set N . Sk: first k sources returned. Note: reported metrics are typically
averaged over queries but only mAP and mRR explicitly mention mean query values.
Ch. 8 of Croft et al. (2009)’s textbook provides an overview of these metrics.

Name Formula Description

Binary Relevance

RR Reciprocal Rank 1/kf Inverse of rank kf for the
first relevant source

mRR Mean Reciprocal Rank 1
|Q|

∑
q∈Q

RR(q) Avg. RR for query set Q

R or R@hit Recall |S ∩ R|/|R| Percentage relevant in returned
R@k Recall at (rank) k |Sk ∩ R|/|R| Percentage relevant in first k

sources returned
P or P@hit Precision |S ∩ R|/|S| Percentage returned in relevant
P@k Precision at (rank) k |Sk ∩ R|/k Percentage first k sources re-

turned in relevant
AP Average Precision 1

|R|
∑

k∈Kr

P@k(Sk) Avg. P@k for relevant docu-
ments at ranks Kr in sources re-
turned

mAP Mean Average Precision 1
|Q|

∑
q∈Q

AP (q) Avg. AP for query set Q

Graded Relevance

DCG@k Discounted
Cumulative Gain

r1 +
k∑

i=2

ri

log2 i
Sums relevance scores r1 through
rk for first k sources returned
using log discount from rank 3
on

iDCG@k Ideal DCG DCG@k for first k pooled assess-
ment scores after reverse sorting,
e.g., (a1, . . . , a5) = (3, 3, 2, 1, 0)

nDCG@k Normalized DCG
at (rank) k

DCG@k/iDCG@k Percentage of ideal DCG ob-
tained for first k sources re-
turned

nDCG or
nDCG@hit

Normalized DCG nDCG@k for k = |S| nDCG for all returned sources S

Scored Sources Only (N : Non-relevant sources)

Bpref Binary preference
(w. binary relevance)

1
|R|

∑
k∈Kr

(
1 − min(|Sk ∩ N |, |R|)

|R|

)
Avg. percentage relevant before
non-relevant for relevant sources;
treats |N | = |R| to balance
classes.

M′ Prime metric (as defined for metric M)
e.g., P′@5, nDCG′

Compute M with S′ = S ∩ (R ∪
N) rather than full ranking S
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Not all of the retrieval metrics in Table 3.1 behave as expected, or
are always applied or interpreted appropriately in the research litera-
ture.11 For example, both mAP and nDCG (nDCG@hit) characterize
relevance in complete rankings. They are helpful for understanding
differences between full rankings and the retrieval models that produce
them. However – most users consider just a small number of results
returned, and so other measures are more appropriate for user-oriented
evaluations (e.g., P@5 or nDCG@5). The tendency for users to exam-
ine few items also motivates the logarithmic discount used for nDCG.
nDCG@5 gives decreasing credit for relevant items starting at rank
3, in contrast to P@5 where all relevant items in the top 5 hits have
the same weight. P@5 uses binary relevance: items are identified as
either relevant or non-relevant. nDCG@5 instead uses graded relevance,
where relevance scores may have different ‘levels’ (e.g., 1 for ‘Low,’ 2
for ‘Medium,’ and 3 for ‘High’ relevance).

In the end, no metric is better on its own – it depends upon what we
want to measure. If say we want to know how often relevant items are
in the top-5 hits, P @5 is simpler to interpret than nDCG@5. But if we
instead want to characterize how often highly relevant sources appear
in the top-5 hits, then nDCG@5 is more helpful.

To avoid bias in model comparisons, even when there are disputed
or incorrect relevance assessments in a qrels file, we report performance
measures using the original qrels file. ‘Cleaning up’ a qrels file by adding
or revising entries is to be avoided, as it prevents direct comparison
with other published work using the collection: this changes the ideal
response, and the specific corrections are likely motivated by improving
performance for a specific system. It is acceptable to note in a paper
where issues in qrels are found, and in some cases to do additional
experiments using modified qrels. However, this is only acceptable if
results using the ‘official’ qrels file from a test collection are reported,
and the qrels changes are unbiased.12

11See Fuhr (2017) for a critique of mRR and a proposed replacement, as well as
common uses of mAP.

12Automated qrel changes are preferred, e.g., using topic and result data. Manual
‘cherry-picking’ of qrel topics for a model family is weak science.
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Qrels and items with unknown relevance. Qrels provide judge-
ments for pooled sources used in assessment. Unless the collection is
extremely small, we do not have the relevance judgements for all collec-
tion sources per topic: only pooled sources are evaluated. This means
that people using an existing test collection often retrieve sources that
are unevaluated. This is illustrated for Model A in Example 3.4, where
the 3rd formula retrieved was not included in the assessment pool for the
query. This unrated formula will be treated differently, depending upon
the metrics that we use. By default, unrated hits are considered non-
relevant, e.g., the Precision@5 (P@5) for Model A giving the percentage
of relevant items within the first 5 returned would be 2/5.

Some metrics ignore sources with unknown relevances, such as the
Bpref and prime (′) metrics shown in Table 3.1. For example, if a 6th
formula returned by Model A was graded relevant, then the P ′@5 would
be 3/5; if the 6th formula is non-relevant or no 6th formula was returned,
P ′@5 is still 2/5. Ignoring unevaluated items allows evaluation using
only graded items in qrels files, and avoids assuming unpooled sources
are non-relevant.13

Bpref measures the number of consistent rank preferences of relevant
vs. non-relevant sources for a query. A relevant source’s preference is
consistent will all other sources at lower ranks; a non-relevant source is
inconsistent with relevant sources at lower ranks. Bpref gives no credit
for a relevant source with ≥ |R| non-relevant sources above it in the
ranking, where R is the number of relevant sources for a topic/query.
Relevant sources missing in a ranking are also given no credit.

Question answering metrics. The main metrics for question answering
are simpler than for retrieval, as shown in Table 3.2. Most evaluations
report the percentage of correct responses (with normalizations/toler-
ances as described earlier) and/or the number of responses that match
the target answers in the test collection exactly. Some test collections
report perplexity to characterize system uncertainty in making multiple
choice question answer selections. Perplexity for the correct answer ac

13These metrics are also helpful in early design, as models can simply rank scored
sources. However, metrics obtained this way cannot be compared with published
systems, because the retrieval step that filters the collection is skipped.
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Table 3.2: Question Answering Metrics. ak: answer for question qk. Ak: prob.
distribution for possible answers to qk (e.g., multiple choice). Note: Metrics are
computed using target answers, and text measures are tokenization-dependent.

Name Formula / Reference Description

Correctness and Uncertainty

EM Exact
match rate

1
|Q|

∑
qk∈Q

δ(ak, qk) Percentage answers identical to tar-
get answers (δ returns 0/1)

Accuracy Correct
answer rate

1
|Q|

∑
qk∈Q

e(ak, qk) Percentage answers within toler-
ance of function e (returns 0/1)

Perplexity Avg. correct an-
swer perplexity

1
|Q|

∑
qk∈Q

1
P (ac|Ak, qk) Correct answer prob. uncertainty

as #items chosen from randomly

Similarity to Text Answers (including Rationales, Step-by-Step)

Token Level

Token F1 Token F1 score 2RP

R + P
Harmonic mean: % target answer
tokens in response (Recall), % re-
sponse tokens in target answer
(P recision)

BERTScore Token F1 w.
token embedding
cos similarity

2RacPac

Rac + Pac
Highest target/response token pair
cos. similarities give avg. token sim-
ilarity for target (Rac), avg. token
similarity for response (Pac)

N-gram Level
BLEU Bi-Lingual Evalua-

tion Understudy
Papineni et al. (2002) [0, 1] score from shared target an-

swer/response n-grams + penalty
for short outputs.

sBLEU Sentence-BLUE BLEU for individual sentences.

String Level
Edit distance String edit

distance
Yu et al. (2016) Operation count to convert one

string to another (e.g., insert,
delete, replace). Can be normalized
to [0, 1] using string lengths.

δ(a, b) = (a = b); e(a, b) = (normalize(a) = normalize(b))
BLEU and edit distance have many variations.

in the answer probability distribution Ak for question qk is converted
to a random choice between n options, using n = 1/P (ac|Ak, qk) . For
example, if a model estimates the target answer is 25% likely to be
correct, then the perplexity is n = 1/0.25 = 4.

For text responses, open response questions, and comparing expla-
nations or step-by-step solutions against target answers in a collection,
text similarity measures are used at the token, n-gram, and string/se-
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quence levels.14 The token F1 measure is the harmonic mean for the
percentages of target answer tokens in the response (i.e., recall), and
response tokens in the target answer (i.e., precision).

For embedded tokens, a variation called the BERTScore (Zhang
et al., 2020b) has been used. This is similar to the token F1 score,
but makes use of a trained embedding model (e.g., BERT). All target
answer and response tokens are embedded using this model, and the
highest cosine similarity between each target answer and response token
is first computed. From these maximum similarities, the average cosine
similarity for a target answer to a response token is used for recall, and
the average cosine similarity from a response token to a target answer
token is used for precision. F1 is then computed as before. Embeddings
capture token context missing in the token F1 measure, e.g., this can
avoid penalizing synonyms, but the token F1 measure is more easily
computed and interpreted.

Similarity based on token sequences such as n-grams or full strings
can also be used. BLEU was originally developed to measure the
success of translations by comparing a translation against one or more
accepted translations of a sentence (Papineni et al., 2002). It computes
the similarity of n-grams (i.e., token sequences of a fixed length, for
different values of n) between a response and target answer(s), with an
additional penalty for short answers. sBLEU modifies this to compute
similarity at the sentence level, rather than for complete responses. Edit
distance considers an entire token sequence, and computes the number
of operations from a fixed set needed to transform one to the other
(e.g., insert, delete, replace, Yu et al., 2016).

For the text similarity measures, it is important to realize that they
reflect surface structure or correlations learned by a model, and do
not directly quantify semantic similarity. These metrics are certainly
correlated with semantic similarity, but they only indirectly capture
differences in information content between responses and target answers.
What they actually measure is how closely one string imitates the other
based on tokens or token embeddings. They are still very useful, but
one has to be a bit careful about their interpretation.

14Note: All string-based measures, including token F1 and BERTScore are affected
by the method used to split words into tokens.
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3.5 System Comparisons and Statistical Tests

Imagine that we have two math search systems returning 10 results per
query for a test collection with binary relevance grades. We determine
that the average P@10 is 50% for both systems. However:

1. For the first system, 5 of 10 results are relevant for every query
(i.e., every query has P@10 of 50%).

2. For the second system, half of the queries return no relevant
sources (i.e., P@10 of 0% per query) while the remaining half
return only relevant sources (i.e., P@10 of 100% per query).

While the average P@10 scores are identical, we would probably much
prefer the first system because it is more consistent and avoids missing
relevant answers altogether.

To capture variance in our evaluations, such as for rank metrics
or differences between target and provided numeric answers to ques-
tions, we want to compare distributions (i.e., sets) of values rather than
simply averages. Statistical hypothesis tests are used to check whether
differences in average measures are likely to be stable when running
additional queries. They include an estimate for the probability of de-
tecting a difference incorrectly (i.e., a Type-1 error) given as the p-value.
Generally we consider a p-value less than either 5% or 1% (i.e., p < 0.05
or p < 0.01, chosen before running an experiment) to be a ‘statistically
significant’ difference suggesting that the averages are unlikely to be the
same after running a large number of additional queries/questions.15

Note that hypothesis tests are probabilistic estimates, and not certain
answers regarding whether averages are actually different in the limit. It
is not possible to run all possible queries/questions to know for certain.
Despite this limitation, statistical tests provide a more rigorous and
nuanced characterization of differences in metric values than comparing
average values directly.

Commonly used statistical hypothesis tests for performance metrics
include the standard t-test for comparing two distributions, and the Bon-
feronni corrected t-test when comparing two or more models to a single

15Important note: using ‘significantly improved’ or ‘significantly different’ without
a hypothesis test is a short path to having a research paper rejected.
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baseline system. The correction here adjusts computed p-values when
multiple comparisons are made, because without correction the proba-
bility of detecting a difference increases with additional comparisons.
Many other tests and comparison types are also used. The selection
of a chosen measure or test is motivated by the goal of a comparison,
variable data types, and data distribution assumptions (e.g., correlation
coefficients, χ2 (‘chi-squared’), and Wilcoxon rank sum tests).

It is also very important when comparing two systems to check raw
metric values, and to examine the specific topics where performance
differs substantially. For example, visualizing raw metric data can reveal
whether metrics are similar across queries/questions, or vary dramati-
cally (e.g., for the P@10 example from the start of this section). One
simple approach is to sort the metric values and then produce a ‘ski
jump’ bar graph. Specific queries/questions where larger differences in
metric values are seen can help identify specific limitations, patterns of
behavior, and information use by the models. Equally importantly, this
also helps identify bugs in system implementations, including where
computed metrics are unusually strong, but not because the model is
effective.16 For search tasks, frameworks like PyTerrier17 provide easy
access to query-specific differences between models, and can be used to
compute common statistical tests. Additional helpful evaluation tools
include trec_eval,18 pytrec_eval19 and ranx.20 For QA tasks, frame-
works such as nltk21 can be used to compute standard text metrics.
Standard data matrix tools (e.g., Pandas22) and statistical tools (e.g.,
Scipy stats23) can also be used to compile descriptive statistics and
compute hypothesis tests.

16Based on a true story. Or three.
17https://pyterrier.readthedocs.io/en/latest.
18https://github.com/usnistgov/trec_eval.
19https://github.com/cvangysel/pytrec_eval.
20https://github.com/AmenRa/ranx.
21https://www.nltk.org/.
22https://pandas.pydata.org.
23https://docs.scipy.org.

https://pyterrier.readthedocs.io/en/latest
https://github.com/usnistgov/trec_eval
https://github.com/cvangysel/pytrec_eval
https://github.com/AmenRa/ranx
https://www.nltk.org/
https://pandas.pydata.org
https://docs.scipy.org


4
Formula Search

As described in Section 2, the information conveyed in a formula is pri-
marily structural, representing a hierarchy of operations over arguments.
This hierarchy can be represented in an operator tree (OPT) obtained
by mapping symbol layout to an operation hierarchy. For brevity and
clarity, authors often assume that readers are familiar with common
operations and variable types for the subject area they are writing upon.
The full information that a formula conveys and is associated with
includes these notation conventions and related information presented
in surrounding text, other formulas, and even other graphics (e.g., ta-
bles or figures). Considering these pieces of context is very helpful for
formula search.

With that said, there are certainly situations where searching for
isolated formulas is helpful. This includes defining unfamiliar notation,
re-finding sources using part of a formula (e.g., ctrl-f for formulas),
browsing through variations of a formula (e.g., loss functions using the
cross-entropy loss), identifying applications in different domains (e.g.,
medicine vs. computer science), and formula autocompletion.

86
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Figure 4.1 illustrates the information tasks used in formula search,
using the model from Section 1.1 We assume that formulas have already
been indexed using one or more representations (e.g., sparse and/or
dense: OPT, SLT, visual-spatial, etc.) as described in Section 2.

Collection 
Index

R1. Query 

Request sources  
of information

S2. Communicate 

Create new  
information sources

A1. Annotate 

Add information 
to sources

R2. Consult 

Examine and 
navigate sources

Collection 
of  

Sources

Collection 
of  

Sources

Collection 
of  

Sources

Collection 
of  

Sources
Queries 
*Annotated

Collection of 
Sources 

*Annotated

Queries

Results for 
Queries

Figure 4.1: Information Tasks Performed in Formula Search. Prior to search, formula
patterns in a collection of sources (e.g., OPT and SLT paths) are enumerated or
embedded in vectors. These patterns annotate formulas and provide lookup keys
in the collection index. Formulas in the index with patterns identical to the query
(sparse retrieval) or similar to the query (dense retrieval) are selected, ranked, and
then communicated to the user in a new source (e.g., search result page).

In this section, we first present test collections used for developing
and evaluating formula search. We then present formula search models
organized by the formula representations they use, and then summarize
their effectiveness on the test collections. State-of-the-art models use
more than one formula representation. This is because dense retrieval

1Communicating formula search results is important, but little studied.
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models can more flexibly match related formulas using abstract/latent
contextual patterns, while concrete patterns (e.g., SLT and OPT paths)
are better for retrieving highly similar formulas using specific symbols
and structures.

4.1 Test Collections for Formula Search

Relevance definitions for formula search differ based on information
needs, and formula search relevance definitions have evolved over time
in test collections. There are two basic formula search tasks that have
been explored, which differ in their consideration of context.

1. Isolated: structural similarity of query vs. candidate formulas
(SLT and/or OPT), sometimes with optional wildcard symbols

2. Contextual: formula relevance depends upon text where query
and candidate formulas appear

Both tasks are illustrated in Example 3.1 from the previous section.
NTCIR: NTCIR-10 was the first shared math-aware search task

(Aizawa et al., 2013). It had a formula search subtask, in which systems
needed to retrieve formulas similar to a given formula query. The
collection included 100,000 technical papers from arXiv (mathematics,
physics, and computer science) with 35.5 million formulae.

In NTCIR-11 the formula search task was a known-item retrieval
task (Aizawa et al., 2014). The query was either identical to a specific
formula instance in a Wikipedia article, or a version with wildcard
replacements for subexpressions. Systems were evaluated based on
ranks for target formula instances. A Wikipedia page collection with
mathematical formulas was used, which was much smaller than the
NCTIR-10 arXiv collection.

NTCIR-12 introduced the Wikipedia Formula Browsing (WFB) task
that is similar to NTCIR-10: retrieve relevant formulas for a formula
query (Zanibbi et al., 2016a). NTCIR-12 uses 319,689 articles from
English Wikipedia with over 590,000 formulae in the corpus.

All three test collections use lab-generated topics. In NTCIR-10, 21
formula queries were chosen by the organizers for arXiv papers, of which
18 queries included wildcards and 3 were concrete queries. NTCIR-11



4.1. Test Collections for Formula Search 89

had 100 queries, with 59 including wildcards, and 41 concrete queries
without wildcards. Queries were randomly sampled from Wikipedia
pages and then modified to include query variables. The NTCIR-12
task had 40 queries, divided into 20 concrete queries and 20 wildcard
queries. The wildcard queries are created by replacing one or more
sub-expressions in each concrete formula query with wildcards. The
intent was to observe differences in retrieval behavior when wildcards
were added to queries.

Different pooling processes are used in each NTCIR collection (Man-
souri et al., 2021a). No pooling was needed for NTCIR-11, because
retrieval targets were specific formulas. In contrast, every formula in-
stance was treated as a separate source for the NTCIR-12 WFB. This
led to limited diversity in the judgement pools after selecting the top-20
instances from each submitted run. For example, for the query β (a
short formula consisting of a single symbol), every formula instance in
the pool of formulas to be judged was β.

Both the NTCIR-10 and -12 test collections use graded relevance
(0-2): 2: Relevant (R), 1: Partially Relevant (P), or 0: Non-relevant (N).
For NTCIR-10, the assessors were mathematicians or math students
who viewed each formula instance from the judgment pool in isolation,
considering the query-specific scenario and judgment criteria specified
for the query. For the NTCIR-12 task there were two groups of assessors,
with each group independently judging pooled formulas. One group was
computer science graduate students, and the other was computer science
undergraduates. Pooled formula instances were shown to the assessors
in context by highlighting them in sources, but assessors were not asked
to interpret the pooled formula in that specific context. Instead, the
assessment was to done based on the pooled formula alone.

For each topic in NTCIR-11, the single Relevant (R) formula instance
was defined as the formula instance that had been used as the formula
query. Note that there may have been other instances of the same
or similar formulas in the collection, but like all instances of other
formulas, they would be scored as Non-relevant (N). NTCIR-11 used
mean reciprocal rank (mRR), which is appropriate for single retrieval
targets per topic.
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For assessment, NTCIR-10 and -12 combined the judgments from
two assessors to form a 5-level “Aggregate” relevance score. This was
done by summing the two scores from assessors for each pooled formula.
Relevance scores ranged from 0 (both assessors judged N) to 4 (both as-
sessors judged R). To compute evaluation measures the 4 level-relevance
is binarized, by treating scores of 0-2 as non-relevant, scores of 3-4 as
relevant.

NTCIR-10 reported P@5, P@10, P@hit (i.e., for all returned results),
and MAP. NTCIR-12 uses P@k for k = {5, 10, 15, 20}. Later, researchers
used Bpref (Buckley and Voorhees, 2004) to avoid penalization for
unevaluated formulas.

ARQMath: The Answer Retrieval for Question on Math (ARQ-
Math) lab introduced a contextualized formula search task illustrated
in Example 3.1. The test collection was developed over three years, gen-
erating test collections referred to as ARQMath-1 (2020), ARQMath-2
(2021), and ARQMath-3 (2022).

ARQMath’s collection consists of question and answer posts from
a math community question-answering website, Math Stack Exchange
(MSE). These question posts provide a diversity in subject areas and
required mathematical expertise, ranging from simple questions from
high school to advanced topics. Formula queries are taken from question
posts, and the task is to find relevant formulae inside other question and
answer posts. All MSE questions and answers posted from 2010 to 2018
are used as the collection of sources. Formula queries for topics were
selected from questions posted in 2019 (ARQMath-1), 2020 (ARQMath-
2), and 2021 (ARQMath-3). Additional training topics are provided in
the test collection.

To make topics diverse, ARQMath attached a complexity label to
topic formulas, dividing them into low, medium, and high-complexity
topics. Additional details on topic selection can be found elsewhere
(Mansouri et al., 2021a). To avoid the lack of diversity in pooled formulas
seen in NTCIR-12, ARQMath pooling selects visually distinct formulas:
two formulas are visually distinct if their Symbol Layout Trees differ.
The canonicalized SLT representation from Tangent-S (Davila and
Zanibbi, 2017a) was used to identify visually distinct formulas when
two formulas are parseable, or had identical LATEX strings otherwise.
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For each visually distinct pooled formula, up to five instances of that
formula were shown to the assessors. Example 3.5 shows the Turkle2

interface used for assessment. As shown in the left panel of the figure,
the formula query

∑n
k=0

(n
k

)
k is highlighted in yellow. The assessors can

use the question post to understand the user’s information need. In the
right panel, two instances of one visually-distinct formula,

∑n
k=0

(n+k
k

)
,

are shown in two different posts. For each instance, the assessor could
consider the post in which the instance appeared when deciding the
relevance degree. The final relevance score for a formula is the maximum
relevance score for any judged instance of that formula.

While the official evaluation using visually distinct formula pools,
ARQMath introduced the use of “Big Qrel Files”, where nearly all
assessment data is provided. This includes assessment for each individual
formula instance, along with assessor ID. This can be used to study
effectiveness of formula search models, under assessment of different
people, and to change how final relevance scores are defined (e.g., using
average rather than maximum relevance scores).

ARQMath organizers hired undergraduate and graduate in math-
ematics or with strong mathematical backgrounds to act as assessors.
Each year, the assessors were trained by a math professor during three
training sessions. The sessions included discussing relevance ratings for
practice topics, with the goal of reducing variation in ratings across
assessors, and minimizing assessment errors. After some discussion be-
tween organizers and assessors in ARQMath-1, relevance for retrieved
formulas was defined as follows:

For a formula query, if a search engine retrieved one or more in-
stances of this retrieved formula, would that have been expected to be
useful for the task that the searcher was attempting to accomplish?

Assessors assigned each formula instance in the judgment pool one
of four scores as defined in Table 4.1. For example, if the formula query
was

∑ 1
n2+cos n , and the formula instance to be judged is

∑∞
n−1

1
n2 , the

assessors would decide whether finding the second formula rather than
the first would be expected to yield good results. To do this, they
would review the question post containing the query (and, optionally,

2https://github.com/hltcoe/turkle.

https://github.com/hltcoe/turkle
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Table 4.1: Relevance scores and definitions for ARQMath Formula Search task.

Score Rating Definition

3 High Just as good as finding an exact match to the formula query would be
2 Medium Useful but not as good as the original formula would be
1 Low There is some chance of finding something useful
0 Not Relevant Not expected to be useful

the thread containing that question post) to understand the searcher’s
information need. Here the question post fills a role akin to Borlund’s
simulated work task (Borlund, 2003), although here the title, body, and
tags from the question post are included in the topic and may be used
by retrieval systems. Assessors also consult the posts where retrieved
formula instances come from (these may be question or answer posts),
along with the associated thread to see whether the formula would have
been a useful basis for a search, i.e., how likely useful content would be
found if this or other instances of the retrieved formula were returned
by a search engine.

The ARQMath organizers did make one change to the way this
relevance definition was interpreted for ARQMath-2 and -3. ARQMath-1
assessors were instructed during training that if the query and candidate
formulas had the same appearance, then the candidate was highly
relevant. For ARQMath-2 and -3, the interpretation of ‘exact match’
was clarified to take the formula semantics and context into account.
For example, variables of different types would not be considered the
same, even if variable names are identical. This means that an exact
match with the formula query may be considered not relevant. On the
other hand, formulas that do not share the same appearance or syntax
as the query might be considered relevant. This is usually the case
where both formulas refer to the same concept. For the formula query
S
n ≥ n

√
P (ARQMath query B.277), formula 1+2+3+...+n

n ≥ n
√

n! has
medium relevance. Both formulas are referring to the AM-GM inequality
(of Arithmetic and Geometric Means).

System evaluation is performed after removing duplicate instances
of visually identical formulas from search results, and then calculating
effectiveness measures over the ranked series of visually distinct formu-
las. This is done by replacing each formula instance with its associated
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visually distinct formula id, and then removing duplicates starting from
the top of the ranking. To avoid earlier issues with unevaluated hits
for people using the test collection after assessment was complete, the
organizers chose the nDCG′ measure (read as “nDCG-prime”) intro-
duced by Sakai (2007) as the primary measure. The nDCG measure on
which nDCG′ is based is widely used when graded relevance judgments
are available. ARQMath also uses two other measures: Mean Average
Precision (MAP′), and Precision at 10 (P′@10), after removing the
unjudged hits. For MAP′ and P′@10 High+Medium binarization is
used, meaning only the medium and high relevance ratings (2 and 3)
were considered relevant.

AccessMath. As an example of a very different (albeit small) test
collection, the AccessMath system described in the first section (Davila
and Zanibbi, 2018) was developed using lecture videos and LATEX lecture
notes produced for those lecture videos.3

4.2 Formula Retrieval Models

We have organized formula retrieval models by the formula represen-
tation they use for search. Some of the representations imply sparse
vs. dense representations as noted below. A more detailed discussion
of formula representations can be found in Section 2. The formula
representation types we distinguish here are:

Text-Based: Formulas represented by tokens in text encodings (e.g.,
LATEX tokens). Early systems used this with traditional sparse
(i.e., inverted index-based) retrieval models such as TF-IDF.

Tree-Based: Use formula tree representations (e.g., SLT and OPT).
Retrieval is performed over sparse tuple indexes for substructures
(e.g., paths, subexpressions) and/or (re-)ranking by tree edit
distance or graph alignment.

Visual-Spatial: Captures formula appearance symbolically without
writing lines (e.g., in SLTs) or operation-argument relationships
(e.g., in OPTs).

3Notes: https://www.cs.rit.edu/~dprl/files/TangentV-data_results.zip,
Videos: https://www.cs.rit.edu/~accessmath/am_videos.

https://www.cs.rit.edu/~dprl/files/TangentV-data_results.zip
https://www.cs.rit.edu/~accessmath/am_videos
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Embedding: Text, tree, or visual-spatial representations for formulas
and/or subexpressions are embedded in vector spaces. Nearest-
neighbor search using vector similarity identifies candidates.

Other: Use images or other representations not described above.

Example 4.1 compares the formulas y = x2 and y = x in different
representations. At top-left we see a text based representation, where
we have two lists of tokens produced by linearizing SLTs represented in
LATEX. At the top-right we have operator and symbol layout trees at
left and right respectively. Finally, at the bottom we see the formulas
represented as vectors (points) in a 3d embedding space. Such a repre-
sentation can be created from text, tree, or other representation. The
specific positions of vectors depend upon training data and the training
tasks, learning algorithms, and loss functions used for embedding.

Example 4.1: Formula comparison in different representations.

y, =, x, ^, 2 y, =, x

=

y ^

x 2

=

y x

LaTeX Tokens

=y x
2

=y x

Operator Tree Symbol Layout Tree

Text-based Tree-based

y, =, x, ^, 2 y, =, x
=

y ^

x 2

=

y x

LaTeX Tokens

=y x
2

=y x

Operator Tree Symbol Layout Tree

y=x2
y=x

Text-based Tree-based Embedding-based

Table 4.2 shows the first formula returned by models using different
formula representations. Each model has a ‘reasonable’ first hit. While
it is helpful for identical or near-identical formulas to be highly ranked,
matching identical/nearly-identical formulas is easy for reasonably ex-
pressive representations and indexing patterns.
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Table 4.2: The first formula returned by different search engines for three queries
of increasing structural complexity.

Query

Model Repr. Cov(x, y) = 0
∫ 1

0
sin−1(x)

x
x! =

√
2πx ∗ ( x

e
)x

MathDowsers Tree paths COV (X, Y ) = 0 J =
∫ a

0
sin−1(x)

x dx x! ≈
√

2πx ·
(x

e

)x

(SLT)
Approach0 Tree paths Cov(x, y) = 0

∫ 1
0

sin−1(x)
x dx = π

2 ln 2 x! ∼
√

2πx( x
e )x

(OPT)

Tangent-CFT Tree embed. cov(y,x) = 0
∫ ∞

1

sin2(x)
x

n! =
√

2πx
(

x
e

)x

XY-PHOC Visual-spatial Cov(x, y) = 0
∫ 1

0
sin(x)dx

x n! =
√

2πx
(

x
e

)x

Effectiveness-wise, the ability to capture relevance for formulas that
are progressively more distinct from the query is what differentiates most
formula search models. This is one of the reasons that the ARQMath test
collections used full rank metrics for ranking formula search systems (i.e.,
nDCG′, with mAP ′ added for comparison), in addition to observing
metrics focused on the top of a ranking (e.g., P ′@10, mRR).

A summary of formula search models is provided in Table 4.3. In
the remainder of this section, we will discuss the families of formula
search models based on their representation types.

4.3 Text-based and Tree-based Models

It is common to use traditional sparse retrieval models for more complex
domains such as math. Particularly in the early days of formula search,
traditional token-based sparse models such as TF-IDF were used. An
example is one of the earliest large-scale formula search engines created
for the Digital Library of Mathematical Functions (DLMF) (Miller
and Youssef, 2003). LATEX is parsed into an SLT-type tree, which is
then linearized after normalizing token symbols. Normalizations include
converting symbols to text tokens, and mapping non-alphanumeric
characters to alphanumeric strings. For instance, xt−2 = 1 given as
‘x∧{t-2}=1’ is converted to the token sequence:

x, BeginExponent, t, minus, 2, EndExponent, Equal, 1.
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Table 4.3: Formula Search Models. ‘Others’ representations includes images.

Representation Canonicalization
Model SLT OPT Others Context Unif. Norm. Rank References

Text
DLMF ✓ ✓ TF-IDF Miller and Youssef (2003)
ActiveMath ✓ ✓ Tokens Libbrecht and Melis (2006)
MathDex ✓ ✓ ✓ TF-IDF Miner and Munavalli (2007)
EgoMath ✓ ✓ ✓ ✓ TF-IDF Mišutka and Galamboš (2008)
MIaS ✓ ✓ ✓ ✓ TF-IDF Sojka and Líška (2011)
LCS ✓ ✓ ✓ LCS. Pavan Kumar et al. (2012)

Tree
MathWebSearch ✓ ✓ Paths Kohlhase and Sucan (2006)
WikiMirs ✓ ✓ ✓ ✓ ✓ TF-IDF Hu et al. (2013)
SimSearch ✓ TED Kamali and Tompa (2013)
MCAT ✓ ✓ ✓ ✓ ✓ Paths Kristianto et al. (2016a)
Tangent-3 ✓ ✓ Paths Zanibbi et al. (2016b)
Tangent-S ✓ ✓ ✓ Paths Davila and Zanibbi (2017a)
Tangent-L ✓ ✓ BM25+ Fraser et al. (2018)
Approach0 ✓ ✓ ✓ ✓ Paths Zhong and Zanibbi (2019)
MathDowsers ✓ ✓ ✓ ✓ BM25+ Ng et al. (2020)
Tangent-CFTED ✓ ✓ TED Mansouri et al. (2020)

Embedding
SMSG5 ✓ ✓ ✓ ✓ Cosine Thanda et al. (2016)
Formula2vec ✓ ✓ Cosine Gao et al. (2017)
EqEmb. ✓ ✓ Cosine Krstovski and Blei (2018)
Tangent-CFT ✓ ✓ ✓ Cosine Mansouri et al. (2019a)
NTFEM ✓ Cosine Dai et al. (2020)
Semantic Search ✓ Cosine Pfahler and Morik (2020)
Forte ✓ Cosine Wang et al. (2021)
MathEmb ✓ ✓ ✓ ✓ Cosine Song and Chen (2021)
MathBERT ✓ ✓ Cosine Peng et al. (2021a)
MathAMR ✓ ✓ Cosine Mansouri et al. (2022d)

Visual-Spatial
Tangent-V ✓ Tokens Davila et al. (2019)
XY-PHOC ✓ Cosine Avenoso (2021)
EARN ✓ ✓ ✓ K-NN Ahmed et al. (2021)

Other
TanAPP ✓ ✓ ✓ ✓ Ens. Mansouri et al. (2019a)
Math-L2R ✓ ✓ ✓ ✓ SVMrank Mansouri et al. (2021b)
MathAPP ✓ ✓ ✓ ✓ Ens. Peng et al. (2021a)
FORTEAPP ✓ ✓ ✓ Ens. Wang et al. (2021)

A second normalization is canonical orderings: for commutative oper-
ations where argument order is unimportant (e.g., multiplication and
addition), a fixed ordering is produced using the lexicographic order of
argument tokens. After linearization, DLMF creates an inverted index
used with TF-IDF scoring of query tokens in the same manner as text.4

Approaches like DLMF later included additional canonicalization
steps. For example, EgoMath (Mišutka and Galamboš, 2008) canon-

4Text and formula tokens are stored and retrieved from the same index, using a
unified token representation.
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icalizes argument ordering, and enumerates variables and constants,
using identical symbols to capture variable repetitions.5 For constants,
formula 74 + a2 + b2 is also indexed as const + aconst + bconst. With
variable normalization, formula a − b is also indexed as id1 − id2. Other
normalizations such as removing brackets using distributivity rules are
also applied. The goal in these normalizations is to increase recall by
increasing the number of formulas with similar token representations.

Aside from sparse retrieval, some other approaches such as using the
Longest Common Subsequence (LCS) of a string (Pavan Kumar et al.,
2012) have been used to produce similarity scores. As before, formulas
are canonicalized before applying LCS so that each function, variable,
and number is mapped to a unique token, and constants and variables
are enumerated.

Tree-based models. As discussed in Section 2, we normally use graphs
to represent structured data, and specifically for formulas, trees to cap-
ture a hierarchy of writing lines in SLTs, and a hierarchy of mathematical
operations and arguments in OPTs.

Tree-based approaches can be categorized into two main groups:
part-based, and full-tree matching. One of the earliest part-based models
is MathWebSearch (Kohlhase and Sucan, 2006) that relies on subex-
pression indexing used originally to unify terms in theorem provers
(substitution indexing trees, Graf, 1995). Using operator trees, relation-
ships between progressively more concrete formulas are produced by a
series of variable substitutions. A search for expressions with similar
operator structures and operands starts from the lowest-precedence
operators. Nodes in the substitution indexing tree correspond to expres-
sions with common structures at the top of their operator trees. Moving
from the root to the leaves of the substitution tree yields increasingly
concrete expressions (i.e., after more variable replacements).

Another category of tree-based models represent formula tree sub-
structures. The Math Indexer and Searcher (MIaS) (Sojka and Líška,
2011; Ruzicka et al., 2016) system uses Presentation MathML, encod-
ing subtrees as compact strings. For example, a + b is represented by

5See Section 2 for discussion of symbol enumeration.
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math (mi(a) mo(+) mi(b)). A similar approach that uses subtrees of
differing structural complexity is WikiMirs (Hu et al., 2013). WikiMirs
creates terms (patterns) for search from SLTs by recursively replacing
subexpressions with wildcards. For example, the formula (x + 3) × a

b ,
is tokenized into 4 concrete terms, and four generalized terms with
wildcards for argument subexpressions:

Concrete terms : { (x + 3) × a
b , (x + 3), a

b , x + 3 }
Generalized terms : { (∗) × ∗, (∗), ∗

∗ , ∗ + ∗ }

Term construction is performed recursively until no new terms can be
produced. Unique tokens are enumerated, and then used to create an
inverted index that is searched using TF-IDF. This system was later
extended, incorporating text keywords and using operator trees (Gao
et al., 2016).

MCAT (Kristianto et al., 2016a) improved part-based retrieval by
encoding path and sibling information in symbol layout and operator
trees. Tuples capturing tree paths are used for retrieval patterns in
an inverted index. In addition to the path-based lookup, this model
also uses a hashing-based formula structure encoding scheme, and also
includes text at three levels of granularity. The first level considers
words around a formula within a context window of size 10, along with
descriptions and noun phrases in the same sentence as the formula.
The second level includes all words from the paragraph where the
formula appeared. At the third level, the title, abstract, keywords in the
document, descriptions of all the formulas, noun phrases, and all words
in the document are considered. A formula query combines lookup up
in multiple inverted indexes for both formula and text representations.
This was perhaps the first model to capture surrounding context for
formulas in a detailed manner.

Tangent. Tangent-3 (Zanibbi et al., 2016b) is a two-stage part-
based retrieval model. From an SLT, path tuples are generated in the
form of (s1, s2, R, #) with parent symbol s1, child symbol s2, the
spatial relationship sequence R from s1 to s2, and a count used to
capture repetitions (#). These tuples are used to identify an initial set
of top-k candidates using a sparse bag-of-words model, scoring by F1
(i.e., harmonic mean of tuples matched on the query and a candidate
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formula, also known as the dice coefficient). Top candidates are then
re-ranked using full-tree matching, aligning the query SLT to each
candidate SLT. After alignment, each top-k candidate is scored using
the harmonic mean of symbol and relationship recall (the Maximum
Subtree Similarity (MSS)) and two tie-breakers: symbol precision after
unification, and symbol recall without unification.

The symbol layout tree representation developed for Tangent-3
has been used in a number of retrieval models. The model includes
a container object for matrices, tabular structures, and parenthesized
expressions, as well as explicit whitespace, and variable and operation
types attached to names (e.g., N !x for the number x).6 The Tangent-S
model later included retrieval using both symbol layout and operator
trees (Tangent-S, Davila and Zanibbi, 2017a). In operator trees, com-
mutative and non-commutative operators have node type (U!) and (O!)
for unordered and ordered operations, respectively. Tangent-L (Fraser
et al., 2018) improved retrieval results further through richer indexing
patterns/features, and scoring with language statistics using BM25+
(Lv and Zhai, 2011).

The Tangent-L tuple generator was later re-implemented in the
MathDowsers system (Ng et al., 2020; Ng et al., 2021; Kane et al., 2022).
The new generator adds additional patterns for repeated symbols, and
additional normalizations. Normalization rules are defined to support
operation (‘semantic’) matches. For example, for commutative operators
(A + B, B + A) and symmetry (A = B, B = A) the order of adjacent
symbols is ignored. Using a canonical symbol for operator equivalence
classes, the model also canonicalizes alternative notations (A × B, AB),
operator unification (A ≺ B, A < B), and inequality equivalence
(A ≤ B, B ≥ A). This captures OPT-type relationships in an SLT
representation.

Approach0. Approach0 is a state-of-the-art formula retrieval model
that uses OPT leaf-root paths in an inverted index within a two-stage
model for retrieving operator trees (Zhong and Zanibbi, 2019). An
illustration of OPT leaf-root paths is shown in Example 2.11. OPTs are
generated from LATEX using a small but robust expression grammar. To

6See Zanibbi et al. (2016b) for details.
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boost recall, variable enumeration is applied. Like Tangent-3/-S, retrieval
is performed in two steps. Candidates are first retrieved using matching
leaf-root paths in a sparse index, and then re-ranked using matches of up
to three largest common subtrees identified via dynamic programming.
Similarity is scored by a weighted sum of matched leaves (operands)
and operators from the common subtrees. In the later version of this
system text context is used (Zhong et al., 2021). A textual similarity
score is produced using Lucene BM25, and formula structure-based
scoring uses the IDF of paths and symbol similarity. These scores are
combined in a linear combination.

Full tree matching and tree-edit distance (TED). In addition
to tree alignments used for reranking in Tangent-3/-S and Approach0,
full-tree matching from tree-edit distances (TED) have been used. Tree
edit distance generalizes string edit distance, defined by the number
of operations needed to convert one tree to the other. The SimSearch
model uses tree-edit distance (TED) on SLTs directly as the similarity
measure (Kamali and Tompa, 2013). Three editing operations are used:
insertion, deletion, and substitution. Example 4.2 shows operations
converting the SLT for x2 −y to x+y2. Accelerations such as cost-based
pruning of candidates and caching sub-trees can be used. In SimSearch
operation costs are defined using the similarity of node labels, a node’s
parent’s label, and whether they are leaf nodes. The final ranking is the
inverse edit distance normalized by tree sizes, as given in Equation 4.1.

sim(E1, E2) = 1 − dist(T1, T2)
|T1| + |T2|

(4.1)

Example 4.2: Converting SLT x2 − y to x + y2 in three edits:
Delete 2, replace − by +, and add 2 as superscript of y.

x

2

- y→ → x

2

+ y→ →

Tangent-CFTED reranks results from a path-based dense retrieval
model using tree-edit distances (Mansouri et al., 2020). Unlike SimSearch
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where edit operation weights were defined using heuristics, here weights
are learned for each edit operation. The model uses inverse edit distances
for scoring, as shown in Equation 4.2.7 Tangent-CFTED uses both
symbol layout and operator trees, and the final ranking score is a
weighted combination of individual rank scores.

sim(E1, E2) = 1
TED(T1, T2) + 1 (4.2)

4.4 Dense Retrieval with Formula Tree Embeddings

As for information retrieval and natural language processing in general,
researchers working in math IR turned to embedding models to avoid
the types of vocabulary problems that traditional sparse model have,
and to make greater use of context in patterns used for matching,
as discussed earlier. Early text embedding models such as Word2Vec
(Mikolov et al., 2013) produced revolutionary results for text problems.
These models were then extended to graph data types. The earliest
approaches to graph embddings were simple: linearizing a graph using
different traversals, treat nodes as tokens, and then apply Word2Vec.
Graph embedding models of this type include Node2Vec (Grover and
Leskovec, 2016) and DeepWalk (Perozzi et al., 2014).

SMSG5 was the first known embedding model for math formulas,
and used for re-ranking text-based sparse retrieval results (Thanda
et al., 2016). For first-stage retrieval formulas in Presentation MathML
(SLTs) are linearized and indexed as keywords in a sparse index using
ElasticSearch. For re-ranking the doc2vec embedding model was used
(Le and Mikolov, 2014) to covert binarized expression trees into real-
valued vectors. Each operator and its operands are treated as tokens
for the doc2vec model, and linearized using an in-order traversal. If
the operand is a subexpression rather than a symbol, a token identifier
for the subexpression is used. Example 4.3 shows tokens extracted for
formula x3 +(1+x)2. The tuples/patterns produced are similar to those
used for other tree part-based retrieval models described above, and
includes variable and subexpression enumeration. The final similarity

71 is added to the denominator to avoid division by zero.
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score for reranked formulas is the cosine similarity of the query and
candidate vectors.

Example 4.3: Binary OPT for x3 + (1 + x)2 with tokens generated
for operator nodes. MiAS, SMSG, WikiMIRS and other
models index similar patterns.

+

^ ^

x 3 +

1 x

2

Token ID

x,^,3 id1

1,+,x id2

id2,^,2 id3

id1,+,id3 id4

Tangent-CFT (Mansouri et al., 2019a) was the first dense retrieval
model to use both symbol layout and operator trees for formula em-
beddings, using an approach similar to SMSG5. Tangent-S is used to
generate OPT and SLT path tuples. Canonicalization is performed
using enumeration of variables and constants, and in later versions,
operator types. The modified tuples are enumerated and grouped into
n-grams, which are then embedded individually. This process is shown
in Figure 4.2, where both the formula query and candidate formula go
through the same pipeline to generate the vector representations. The
novelty of this model lies in using an n-gram embedding model, fastText
(Bojanowski et al., 2017). This approach is better suited for queries not
seen in the collection, as it represents formulas using subexpressions.
n-gram vector representations for formulas were averaged to obtain the
final embeddings used for retrieval, with ranking by cosine similarity. In
the early version of this model, the vectors of different representations
(SLT, OPT, Unified SLT) were averaged to get the final vector for a
formula. Later, this was converted to combining retrieval results from
each representation using a modified Reciprocal Rank (Mansouri et al.,
2020). A similar approach was applied on other representations such
as N-ary trees in the N-ary Tree-based Formula Embedding Model
(NTFEM, Dai et al., 2020).
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Formula 
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Query 
Vector
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Figure 4.2: Retrieval with Tangent-CFT model. Query and candidate formulas are
passed to the same pre-processing pipeline to extract their vector representations.
The cosine similarity between these two vectors is the similarity score.

The approaches seen so far for embedding use linearized tree rep-
resentations and apply sequence embedding models. As formulas are
more naturally represented as trees, graph convolutional neural net-
works are well-suited to formula embedding. The Semantic Search model
generates graph representations from Presentation MathML (SLTs),
and derives context features from tags, attributes, and text (Pfahler
and Morik, 2020). These features were then used to represent nodes
as one-hot encoded vectors. A graph convolutional neural was trained
using two unsupervised tasks: 1) a contextual similarity task where
labels are generated from the surrounding contexts of mathematical
expressions, 2) a self-supervised masking task. Other graph-embedding
approaches have considered using symbol layout and operator trees.
For example, MathEmb uses operator trees with a Graph Convolution
Network, Graph SAmple and aggreGatE (GraphSAGE), and a Graph
Isomorphism Network (Song and Chen, 2021).

EARN (Ahmed et al., 2021) is a multimodal embedding model that
takes advantage of both image and graph formula representations. An
image encoder uses a formula image rendered from LATEX passed to a
ResNet model (He et al., 2016), followed by a Bi-LSTM to produce an
image embedding. For the graph representations, a message-passing-
based graph encoder is used. The distances between graph-based and
image-based embeddings are used as patterns for retrieval. The visual
and graph-based similarities are combined using a linear combination
in a manner similar to the Tangent-S system.
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Encoder-decoder architectures have also been used for formula search.
Similar to NLP tasks, reconstruction (also known as the ‘fake task’)
where a formula must be decoded from an embedded vector can be used
to train these architectures. After training, only the formula encoder is
needed for embedding formulas. FOrmula Representation learning via
Tree Embeddings (FORTE) uses this architecture by taking an operator
tree as input, generating the vector embedding, and then reconstructing
the formula in the decoder (Wang et al., 2021). The encoding process is
shown in Example 4.4. On the encoder side, trees are traversed depth-
first, with each node represented by an embedding. To preserve formula
structure, a positional encoding in a fixed-length vector is concatenated
to each node embedding. The positional vector represents the binary
branching path from the root to a node in the tree. On the decoder
side, this model uses a novel tree beam search generation algorithm to
reconstruct a slightly different version of the input tree, with attached
‘end’ nodes.

Example 4.4: FORTE encoding process for formula x = 2x − 4.
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Some embedding models include the textual context surrounding a
formula. Early attempts include an embedding model generating embed-
dings for words and formulae using textualized formulas (Krstovski and
Blei, 2018). Linearization is done using SLT tuples from the Tangent-3
system, after which Word2Vec is used within a larger context window
size for formulas than words. A similar idea was adopted in the early
days of BERT transformer models (Devlin et al., 2019), which were
trained on general text. Later models brought attention to the need
for specific tokenizers for math. Note that directly fine-tuning a BERT-
based model for formula search is not ideal, as their tokenizers (byte
pair encoding or WordPiece) are trained using general text, and may
not handle formulae correctly (e.g., by splitting LATEX commands).
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MathBERT pre-trains a BERT model using two tasks: Masked
Language Modeling and Context Correspondence Prediction (Peng et al.,
2021a). For formula search, they use a Masked Substructure Prediction
task as their masking task, with masked structures representing an
operator along with its parent node and child nodes in an operator tree.
During training, the input to MathBERT includes formula LATEX tokens,
context, and operators:

[CLS] LATEX [SEP] Context [SEP] (OPT Nodes)

with [CLS] and [SEP] defined as special tokens. To further incorporate
structural information from the operator tree, this model modifies
the attention mask matrix, leveraging the edges between nodes in the
operator tree.

Rather than linearize formulas to produce a unified formula and
text representation, MathAMR (Mansouri et al., 2022d) uses Abstract
Meaning Representation (AMR) graphs (Banarescu et al., 2013) to
produce a structured unified representation. The process to get the
unified tree representation is shown in Example 2.4. First math formulae
are enumerated and replaced with a special token ‘EQ:ID’ (where ID
is an enumeration). Then, an AMR parser produces an AMR tree,
after which the root of the formula OPT is inserted at the enumerated
formula node. OPT edge labels are modified to be consistent with AMR
conventions. A special edge label ‘math’ is added to the set of AMR edge
labels to indicate a math formula. In the first version, despite having a
unified tree representation, the AMR tree is linearized and then used
to fine-tune a Sentence-BERT model. Unfortunately the linearization
loses structural information, and Sentence-BERT tokenizer may not be
well-suited to the AMR annotations.

4.5 Visual-spatial Models and Formula Autocompletion

Many math formulas in digital libraries are represented in PDF docu-
ments. Even for online resources such as Wikipedia, formulae are often
represented by images rather than Presentation MathML or LATEX.
Formulae are also often represented as images in videos, handwriting,
and slide decks. Formulas may be recognized and converted to LATEX
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for use with retrieval models that we have discussed. An alternative
approach is to search using visual-spatial representations of formulae
that require symbols but no representation of writing lines or operation
hierarchies.

Tangent-V retrieves mathematical formulas and other graphics in
PDF and PNG images (Davila et al., 2019). Built on top of the Tangent-S
system, Tangent-V utilizes symbol pairs extracted directly from images:
for PDFs, symbols are taken directly from the file, and for PNGs,
symbols are identified using an open-source OCR system (Davila et al.,
2014). Line-of-sight graphs are created to capture which pairs of symbols
are unblocked by other symbols. The visible symbol pairs are indexed
with their relative angles in a 21

2D representation to capture symbols
inside square roots and other containers. For search, candidates with
shared symbol pairs are retrieved from a sparse index, and formulas
with large differences in displacement angles and/or symbol size ratios
relative to the query pairs are filtered.8 A re-ranking step aligns matched
pairs one-to-one with the query, and then the Tangent-S Maximum
Subgraph Similarity (MSS) from Tangent-S scores candidates by the
harmonic mean of query node and edge match percentages (F1).

Another visual-spatial representation is 2d histograms of symbols.
XY-PHOC uses a sparse visual-spatial representation for retrieval (see
Example 2.9, Avenoso, 2021). This representation generalizes a one-
dimensional spatial encoding previously used for word spotting in hand-
written document images, the Pyramidal Histogram of Characters
(PHOC) (Sudholt and Fink, 2016). Scoring is done by cosine similarity
of the PHOC embedding vectors. Formulas are represented by a bag
of symbols; for each symbol, a binary vector of 29 elements is gener-
ated, where each element corresponds to a region, and 1 represents the
existence of that symbol in that region.9

Later work found that using concentric rectangles improved PHOC-
based retrieval, and that similar effectiveness is obtained using fewer
region partitions, e.g., only odd-numbered partitions (i.e., 1, 3, 5, etc.)
(Langsenkamp et al., 2024). As seen in other formula retrieval models,

8This is a Boolean query constraining symbol angles and relative sizes.
9PHOC may be a 2d generalization and/or variation of an unweighted binary

independence term model (see Croft et al., 2009).
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using PHOC for part-based rather than whole formula matching can also
improve retrieval effectiveness (Tucker, 2024). The model is surprisingly
effective for formula search despite its simplicity; models that incorporate
IDF-like information (e.g., BM25), SPLADE-like token expansions and
dense retrieval have not been properly explored with this representation
yet. Also, because PHOC is domain-agnostic, requiring only a symbol
vocabulary, it might provide a simple but effective unified representation
for visual-spatial search of text, formulas, and other graphics.

Formula autocompletion. Query auto-completion (QAC) can
help users input queries more quickly, and with formulating queries
when they have a specific intent but lack a clear way to express it in
words. For text queries this helps prevent spelling errors, particularly
on devices with small screens. It was reported in 2014 that for English
queries, using QAC by selecting suggested completions saved over 50%
of keystrokes for global Yahoo! searchers (Zhang et al., 2015).

Formula auto-completion is employed in search engines like Wolfra-
mAlpha. This system employs prefix matching for retrieving candidates.
Consequently, mathematical expressions that are reordered around com-
mutative operators (e.g., a + b = b + a) or use different symbols than
the query are not presented as candidate completions.

Despite extensive research in general query autocompletion, formula
autocompletion remains underexplored. Rohatgi et al. (2019) proposed
an approach that uses LATEX strings and considers three methods: exact
matching, prefix matching, and pattern matching. MathDeck (Diaz
et al., 2021) uses TangentCFT (Mansouri et al., 2019a) to search a
small collection of indexed formulae online as a user inputs a formula,
displaying similar formulas. Both approaches complete the right side of
a query assuming that the left side has been entered. For math formulas,
entry is not always left-to-right: for example, when writing fractions or
integrals.

For autocompletion, XY-PHOC has been used with conjunctive
queries where all query symbols must be present in a candidate. An
additional boolean constraint is also added: that returned formulas must
contain no fewer symbols than the query. This is the first known model
to allow symbols to be inserted in any order for formula autocomple-
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tion, because the XY-PHOC is a spatial representation rather than
a tree-based one. For evaluation, formula search test collections were
used. Four different symbol entry orders for XY-PHOC were compared,
as illustrated in Example 4.5. Experiments confirmed the outside-in
ordering shown in Example 4.5(c) constrains formula completions most
quickly, raising target formulas to the top of the completion list using
fewer symbols on average.

Example 4.5: Different entry orders for three symbols in
∫ ∞

0
sin(x)

x dx
a) left-right, b) right-left, c) outside-in, d) middle-out.

               

∫  
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0

                 −dx ∫          
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4.6 Retrieval Effectiveness and Combining Representations

In this section we summarize the effectiveness seen to-date for the
different retrieval model families presented in this section, using standard
formula test collections (see Table 4.4).

Table 4.4: Formula Search Test Collections

Test Collection Sources Queries Results Metrics
NTCIR-10 (2013) arXiv papers Organizersw F in paper mAP,

P@{5,10,hit}
NTCIR-11 (2014) Wikipedia Individual

Wiki F (known
item)

F in articles mRR

NTCIR-12 (2016) Wikipedia′ Organizersw F in articles P@{5,10,15,
20}, Bpref

ARQMath-1 (2020) 2018 MSE As 2019 MSE Qs F in MSE As nDCG′,
mAP′, P′@10

ARQMath-2 (2021) 2020 MSE Qs
ARQMath-3 (2022) 2021 MSE Qs
AccessMath† (2018) Videos +

LATEX notes
Image region
or LATEX

Image regions
or LATEX form.

R@10,
mRR@10

F: Formula; As: Answers; Qs: Questions; MSE: Math Stack Exchange
wWildcard symbols in at least some query formulas

†Cross-modal or cross-language retrieval; frags.: Fragments (roughly paragraphs)
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While easier to implement, text-based models are generally less
effective than other representations for formula search. This is because
these models do not capture the hierarchical structure of formulas. In
contrast, the strongest models from the most recent ARQMath formula
search tasks are tree-based models. Full-tree matching approaches, e.g.,
using tree-edit distance can be time-consuming and seem to be better
suited for re-ranking. Also, these models are stricter than path-based
models as they match full tree representations.

Results from the ARQMath-3 formula search task show tree-based
approaches obtaining the strongest formula retrieval results. Approach0
obtains the highest nDCG′ of 0.72. Interestingly, Approach0 uses only
OPTs for its formula representation. Tangent-CFTED obtains an nDCG′

of 0.69 using both SLT and OPT representations.10 MathDowsers uses
an SLT-based representation, and also obtains a high nDCG′ score
of 0.64. There is also evidence that multi-modal representations can
be helpful. For example, the multimodal image + SLT dense model
EARN obtained higher Bpref scores compared to the tree-based Tangent-
S model that it extends (0.69 vs. 0.64 on the NTCIR-12 Wikipedia
Formula Browsing task).

Experimental results suggest that despite providing rich contextual
features, dense formula retrieval models may be better suited for finding
similar or partially-relevant formulae than very similar or fully relevant
formulas. The embedding vectors do well at capturing shared contexts,
but not necessarily specific symbols and structures in current models.
Given their ability to match similar formulas well, albeit not rank them
in the ideal order, many approaches use embedding-based models to
select candidates, and then re-rank the results using similarity scores
from tree-based models. Looking at the ARQMath-3 formula search
task, Tangent-CFT’s first stage dense retrieval obtains an nDCG′ of 0.64;
after re-ranking with tree-edit distance this increases to 0.69. A similar
pattern is seen for MathBERT on the NTCIR-12 formula browsing task:
for partial matching the Bpref score is higher than that for reported
tree-based models (0.74), but drops to 0.61 for full relevance matching.

10Tangent-CFTED is actually a two-stage model using dense embeddings of tree
paths for first-stage retrieval, and tree edit distance for reranking.
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For visual-spatial models, the original XY-PHOC had much lower
effectiveness than other approaches at ARQMath-3 for full rank metrics
(nDCG′ of 0.47). However, it was surprisingly competitive in metrics
focused on the top of rankings (e.g., P ′@10). Later refinements including
using additional levels and rectangular regions increased nDCG′ to
0.623, and P ′@10 to 60.9%. These measures were respectively 10% and
8% lower than the best performing tree-based model at ARQMath-3
(Approach0). This is interesting because PHOC models use less complex
representations and a simple sparse retrieval model, and do not employ
statistical weighting or machine learning (Langsenkamp et al., 2024).

Ensembling and learning-to-rank. Ensembling and learning-to-rank
approaches have been used to combine the benefits of different repre-
sentations, and to combine dense and sparse retrieval models. TanApp
(Mansouri et al., 2019a), FORTE-App (Wang et al., 2021), and Math-
App (Peng et al., 2021b) are models that use a linear combination
of relevance scores from dense embeddings (Tangent-CFT, FORTE,
and MathBERT, respectively) with tree-based sparse retrieval and
re-ranking (Approach0). These ensemble models provide better effec-
tiveness compared to each of the individual models. MathApp and
TanApp both obtained higher Bpref values on the NTCIR-12 formula
browsing task compared to their component systems.

Using learning to rank models for formula search is underexplored.
An early attempt used RankBoost with formula and text features (Gao
et al., 2016). A more recent study used only formula features, combining
similarity features from tree-based and embedding-based models and
training an SVM-Rank model (Joachims, 2006; Mansouri et al., 2021b).
The input features in this approach include similarity features from
tree paths, full-tree matching, and embeddings. The SVM-Rank weights
allowed observing feature importance. Consistent with results seen for
the best-performing tree-based retrieval models, it was found that full-
tree matching features on both symbol layout and operator trees were
among the important features.



5
Math-Aware Search

When we have math information needs for topics that include text,
or are too complex to be addressed by formula search alone, we can
use math-aware search engines supporting queries with both formulas
and text. Math-aware search tasks range from the simple ad-hoc query
“a2 + b2 = c2 proof” to complete questions expressed with formulas and
text. Math-aware search can be understood as a multi-modal extension
of traditional text-based search models.

In this section, we first present test collections for math-aware search.
We then present multi-modal math-aware search models, which either (1)
retrieve text and formulas separately and combine relevance scores for
individual sources, or (2) use a unified formula + text representation to
retrieve sources directly. Large Language Models (LLMs) have recently
been applied to math-aware search, including a state-of-the-art model
that transforms the problem of retrieving question answers. A question
answer in text/LATEX is generated using an LLM, and the LLM answer
is then embedded using a unified formula/text representation to search
embedded answers rather than the original question. The section closes
with some additional insights related to math-aware search and LLMs.
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5.1 Test Collections for Math-aware Search

As with formula search, currently the primary standard test collections
are NTCIR and ARQMath.1 Test collections for math-aware search are
summarized in Table 5.1.

Table 5.1: Math-aware Search Test Collections.

Test Collection Sources Queries Results Metrics
MREC (2011) arXiv papers −− −− −−
CUMTC (2015) arXiv papers

(MREC data)
MathOverflow
Qs

Papers mAP

NTCIR-10 (2013) arXiv papers Organizersw Papers mAP,
P@{5,10,hit}

NTCIR-11 (2014) arXiv frags. Organizersw Paper frags. mAP,
P@{5,10,hit},
Bpref

NTCIR-12 (2016) 1. arXiv frags.
2. Wikipedia′

1. Organizersw

2. Organizersw
1. Paper frags.
2. Wiki articles

P@{5,10,15,20}

ARQMath-1 (2020) 2018 MSE As 2019 MSE Qs F in MSE As nDCG′, mAP′,
P′@10

ARQMath-2 (2021) 2020 MSE Qs
ARQMath-3 (2022) 2021 MSE Qs
Cross-Math† (2024) ARQMath 1-

3 Qs (4 lan-
guages)

P′@10,
nDCG′@10

F: Formula; As: Answers; Qs: Questions; MSE: Math Stack Exchange
wWildcard symbols in at least some query formulas

†Cross-modal or cross-language retrieval; frags.: Fragments (roughly paragraphs)

MREC and CUMTC: The first math-aware search collection
with annotated formulas we are aware of is the Mathematical REtrieval
Collection2 (MREC) (Líška et al., 2011). MREC consists of 439,423
scientific documents from arXiv with more than 158 million formulae
with MathML annotations. Four years later, the Cambridge University
MathIR Test Collection (CUMTC) (Stathopoulos and Teufel, 2015)
built on MREC, adding 160 test topics derived from 120 MathOverflow
discussion threads. This was one of the first attempts to use math
community question-answering websites for producing real-world topics
rather than topics created by shared task organizers. CUMTC topics
were selected from question excerpts from 120 threads. These threads
have at least one citation to the MREC collection in their accepted

1Additional details and comparison of these collections are available (Mansouri
et al., 2021a).

2https://mir.fi.muni.cz/MREC/index.html.

https://mir.fi.muni.cz/MREC/index.html


5.1. Test Collections for Math-aware Search 113

answer.3 The majority of topics (81%) have only one relevant document,
and 17.5% have two relevant documents.

NTCIR: NTCIR-10, -11, and -12 used largely the same collections
as for formula search tasks described in the previous section, consisting
of arXiv papers and Wikipedia articles. Sources for NTCIR-10 were
complete technical documents, which makes assessment challenging.
For NTCIR-11 collection sources were reduced to excerpts (roughly
paragraphs) resulting in 8,301,578 search units. NTCIR-12 uses the
NTCIR-11 arXiv collection, along with a collection of (full) Wikipedia
articles.

The NTCIR collections contained an increasing number of math-
aware (formula+text) search topics with assessments for each lab
(NTCIR-10: 15, NTCIR-11: 50, NTCIR-12: 29 (arXiv collection) +
30 (Wikipedia collection)). In NTCIR-11, topics (queries) all had at
least one keyword and one formula. In NTCIR-12, topics were developed
for two different collections (arXiv and Wikipedia), and all topics con-
tained at least one formula, however 5 arXiv and 3 Wikipedia topics had
no keywords. All NTCIR math-aware search topics are lab-generated,
and only the query is provided with no additional description of infor-
mation needs and search scenario. Pooling methods also differ between
the different collections (Mansouri et al., 2021a).

The assessment process in NTCIR-10 for text+formula searches was
similar to the formula search task, with the same assessors. Relevance
was decided from retrieved formulas rather than documents due to their
size and complexity. For each formula, assessors used a graded 0-2 scale,
to represent 0: non-relevant (N), 1: partially relevant (PR) or 2: relevant
(R) judgements. Each formula was assessed by one or two assessors.

In NTCIR-11, assessors were shown the title of the topic, the rel-
evance description, and an example hit (if any) as supplementary in-
formation. For this collection, relevance was determined using roughly
paragraph-sized sources rather than individual formulas. The assessors
were undergraduate students in mathematics for the arXiv topics, and
computer science for the Wikipedia topics. Each hit was evaluated by
two students, with their judgements combined. Relevance levels were

3Answer accepted by the user who posted the question.
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defined the same as for NTCIR-10. The final relevance score from two
assessments assigned R/R and R/PR to relevant (2), PR/PR, R/N,
PR/N to partially-relevant (1), and N/N to not relevant (0).

To evaluate effectiveness, NTCIR-10 uses MAP and P@{5,10, hit}. In
NTCIR-11 used MAP, P@{5, 10}, and bpref to accommodate unjudged
instances. NTCIR-12 reported P@{5, 10, 15, 20}. In all cases, relevance
judgments for sources missing from the pools (as can happen for P@hit
and MAP) were treated as not relevant.

ARQMath: ARQMath’s main task is Answer Retrieval, where
Math Stack Exchange (MSE) question posts containing text and for-
mulas are used to search MSE answer posts. ARQMath’s topics and
collection were built as shown in Figure 5.1. All questions and their
related answers posted from 2010 to 2018 are provided for training, in-
cluding roughly 1 million questions and 28 million formulas. ARQMath
topics were selected from new questions posted in 2019, 2020, and 2021.

Question

Answer

Questions in 2019 

Question

Question

Question

Question

Answer

Answer Answer Answer

Answer

Questions in 2020 Questions in 2021

ARQMath-1 ARQMath-2 ARQMath-3

Math Stack Exchange Posts from 2010 to 2018 ARQMath Topics for Answer Retrieval Task

Collection

Figure 5.1: Topics and Collection for ARQMath Answer Retrieval Task. Math
Stack Exchange (MSE) question answers from 2010–2018 are the collection searched,
while topic questions were posted in 2019 or later. Question and answer posts from
2010–2018 are also provided for training (i.e., all posts shown at left).

The answer retrieval task was motivated by three things. First, short
answer posts are easier to assess, as they usually contain at most a few
paragraphs, and are organized within question threads. Second, a query
log analysis showed that the number of question queries was almost
10% higher for math searches compared to searches on other topics
(Mansouri et al., 2019b). Third, question posts act as both queries and
information need descriptions.

There are 226 assessed test topics in total (ARQMath-1: 77, ARQ-
Math-2: 71, ARQMath-3: 78), along with assessments for additional
training topics. ARQMath also provides all system runs used for pooling.
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This provides a way to study different approaches and understand their
behavior in greater detail. Assessors use four relevance ratings, as defined
in Table 5.2. All relevance ratings organized by topic and assessor may
be found in a ‘big’ qrels file available with the test collection.

Table 5.2: ARQMath Answer Retrieval: Relevance Assessment Criteria

Score Rating Definition

3 High Sufficient to answer the complete question on its own
2 Medium Provides some path towards the solution. This path might come from

clarifying the question, or identifying steps towards a solution
1 Low Provides information that could be useful for finding or interpreting an

answer, or interpreting the question
0 Not Relevant Provides no information pertinent to the question or its answers. A post that

restates the question without providing any new information is considered
non-relevant

To be selected as a topic, a question needs to contain at least one
formula. To diversify topics, 3 categorizations were assigned to candidate
question posts, and a stratified sampling strategy was used to select the
final topic sets. These categories are:

1. Topic type: computation, concept or proof
2. Difficulty: low, medium, and high
3. Representation dependency: text, formulas, or both

Assessors were selected from students in mathematics, similar to
the ARQMath formula search task. For each edition, there were 2-3
training sessions with a math professor to introduce the task and train
the assessors. Some questions might offer clues as to the level of mathe-
matical knowledge on the part of the person posing the question; others
might not. To avoid assessors having to guess the level of mathematical
knowledge available to the person posing the question, we asked asses-
sors to base their judgments on the degree of usefulness for an expert
(modeled in this case as a math professor) who might then try to use
that answer to help the person who had asked the original question.
Finally, for evaluation, the same evaluation measures as the formula
search task were used: nDCG′, MAP′ and P′@10. Prime metrics avoid
issues with unevaluated hits (see Section 3).

Cross-lingual math information retrieval: Current test collec-
tions for math-aware search are primarily developed for the English
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language, limiting their accessibility and inclusivity. Cross-lingual math
information retrieval (CLMIR) is a new task, focusing on retrieving
mathematical information across languages. CLMIR has been explored
for math-word problems (Tan et al., 2022), where existing datasets were
translated into Chinese using online machine translators, and manually
refined the translations. CrossMath (Gore et al., 2024) is a novel CLMIR
test collection comprised of ARQMath Answer Retrieval task topics that
have been manually translated into four languages (Croatian, Czech,
Persian, and Spanish). This collection helps address a research gap in
need of filling. Some approaches for machine translation of mathematical
text have been proposed (Ohri and Schmah, 2021; Petersen et al., 2023),
and we expect more in the future.

5.2 Searching with Formulas and Text

Unlike text or formula search where queries and sources have one
representation, for math-aware search queries and sources combine text
with one or more formula representations (e.g., SLT, OPT, or LATEX
tokens). Because of the different representations (i.e., modalities), this
is a math-specific variation of multimodal information retrieval (Zhu
et al., 2024; Shirahama and Grzegorzek, 2016).

A key challenge in multi-modal search is bridging the gap between
diverse data types such as text, images, videos, and audio (Bozzon and
Fraternali, 2010). There are two main approaches for searching multiple
representations: searching modalities separately and then combining
rank scores for individual sources (i.e., federated search), or by searching
a single unified representation for all modalities. Below is a summary of
approaches for combining formula and text search in sparse and dense
search indexes.

Sparse retrieval:
Formulas are represented using text tokens (e.g., in LATEX) or
token sequences annotated on formulas after traversing nodes of
formula trees (e.g., depth-first traversal of OPT or SLT). These
formula tokens may represent individual symbols, or tuples, e.g.,
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‘+’ node in OPT for x + 1 as operator-prefix tuple (+, x, 1), or
(x, 1, →→) for the SLT path from x to 1.

Federated: text and each formula representation have their own
inverted index. Query text and formula representations are
separated before searches are run, and relevance scores are
combined to score individual sources.

Unified: text and formula tokens belong to one vocabulary, and
a ‘traditional’ inverted index is used to search both together
(see Section 1). Linearized formula tokens are inserted in
source text before indexing, and text/math tokens produced
for queries are looked up in the unified inverted index.

Dense retrieval:
Formulas and/or subexpressions are annotated with vectors in
embedding spaces (see Section 2). Before embedding, formula
representations may be linearized tokens (e.g., LATEX), trees (e.g.,
OPT, SLT) or other representations (e.g., PHOC).

Federated: each text granularity (e.g., token vs. sentence) and
formula representation have separate embeddings. Query
text and formula vectors return their nearest-neighbors, and
similarity scores are combined to score individual sources.

Unified: text and formula elements for sources and queries are
embedded in the same dense vector space. Multiple space may
be used for different granularity (e.g., text+math in passages,
vs. individual math/text token embeddings). Vector(s) for
sources close to queries in the unified embedding space(s)
are used to score sources.

5.3 Federated Search: Combining Formula and Text Results

With several sparse and dense formula search models available, one
approach to math-aware search is combining text search with one or
more separate formula searches, and then combining the results to
produce scores for matches sources. Techniques for combining results
include boolean constraints, linearly combining formula and text scores,
learning-to-rank, and voting methods.
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Figure 5.2 shows a math-aware search model that uses independent
searches for text and formulas identify relevant sources (e.g., documents
or passages). At indexing time, the extractor is used to separate the
formulas and text of sources into two separate search indexes, and
formulas are annotated with token sequences for sparse models, or
embedding vectors for dense models. At query time, the same extractor
splits a query into sub-queries for text and formulas, and annotates
formulas with a token sequence or vector. The results from both searches
are combined into the final score for retrieved sources, and the final
result is communicated to the user.

Collection of 
Sources

Extractor

Formula 
Index

Text
Index

Text+Formula 
Query

Formula 
Search Model

Text 
Search Model

Form
ulas 

Text

Text
Search Results

Formula 
Search Results

Fused
Search Results

Formula 
Processing

Text
Processing

Figure 5.2: Federated Search for Formulas and Text. Formulas and text are first
retrieved and scored independently. Multiple relevance scores for formulas and/or
text passages from individual sources are then fused before producing a final ranking.

The first approach that we’ll consider for fusing independent formula
and text searches is using Boolean queries to filter sources that do not
contain both formula and text matches. MathWebSearch (Hambasan et
al., 2014) represents formulas as tokens for OPT subexpressions stored in
a separate inverted index for formulas (implemented in ElasticSearch).
Text search results are used to define Boolean queries of the form
(formula1 ∨ ... ∨ formulan) ∧ (term1 ∨ ... ∨ termn), requiring at least
one formula and one text token from the query to match a source.
Sources without text token matches are removed from the formula rank
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score list, which produces the final ranking. Despite the simplicity of
this approach, the system achieved a P@5 of 0.79 for the NTCIR-11
math-aware search task (arXiv paper collection).

The same boolean constraint is used to filter sources that do not
contain both formula and text matches in the MIaS system (Sojka
and Líška, 2011), which uses canonicalized tuples as formula tokens
(e.g., with variable unification; implemented in Apache Lucene). Rank
scores for sub-queries generated from different combinations of text and
formula tokens are used to re-rank the remaining candidates multiple
ways. Results from this rankings set were interleaved in the final result
to improve the diversity of returned sources (Sojka et al., 2018).

Simple averaging and linear combinations of rank scores have also
been used. For the ARQMath Answer Retrieval task three baselines
methods were used for answer retrieval:

1. Tangent-S formula search (linearly combined OPT and SLT scores),
2. TF-IDF text search, and
3. average of normalized ([0, 1]) Tangent-S and TF-IDF scores.

For Tangent-S, the largest formula (SLT) in the question’s title was
selected, and if no formula was used in the title, the largest formula in
the question body was used. The combined model was more effective
then the formula or text model in isolation.

Linearly combining formula and text rank scores was used in the
MathDowsers (Ng et al., 2020) system, where Tangent-L results for
formula search are combined with BM25+ text search by scaling and
adding relevance scores for sources. For text search, a keyword extraction
model was used to select tokens in question answer posts for use in
text queries. MCAT (Kristianto et al., 2016a) also linearly combines
formula and text rank scores, but for multiple formula (OPT, SLT)
and text indexes. Text is indexed separately at the paragraph and
document (title, abstract, keywords, . . . ) levels. This model was the
most effective for participating teams in the NTCIR-12 math-aware
search task (arXiv collection), in part due to the rich variety of formula
and text representations.

The WikiMirs system (Gao et al., 2016) uses a learning-to-rank
approach to combining formula and text scores. OPT-like tokens are
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generated from the SLT representation for a LATEX string, using two
representations with (1) concrete symbols, and (2) subexpressions re-
placed by wildcards (∗). Sources are retrieved using inverted indexes for
text and formula tokens. These candidates are then re-reranked using
RankBoost (Freund et al., 2003) applied to features focused on formulas.
This system achieved the highest P@K values among the participating
teams in the NTCIR-12 math-aware search task (Wikipedia collection).

MaRec (Math answer Recommender) (Gao and Ng, 2023) uses the
borda count to combine formulas and text scores for answer retrieval.
A Naive Bayes classifier is used to categorize topics in answers and
queries/questions (e.g., algebra, geometry, etc.). At query time, answers
from topics inferred for the query question are selected, and then ranked
separately by text and formula similarity. Text similarity is scored by
the Kullback-Leibler (KL) divergence between question/answer token
frequency distributions, using a vocabulary chosen from terms charac-
terizing topics as detected via Latent Dirichlet Allocation (LDA, Blei
et al., 2003). Formula similarity is computed from average SLT tree-edit
distances, and a depth score based on the sum of leaf-root OPT path
lengths. The final rank score uses the Borda Count, adding the number
of answer posts that rank lower than a source in the formula and text
rankings.

Most systems that combine independent formula and text searches
to date use sparse retrieval (i.e., inverted indexes) to produce the
initial retrieval results. However, some models combine sparse and dense
retrieval models. For example, ColBERT (Khattab and Zaharia, 2020)
has been used for text search, and the similarity scores linearly combined
with formula search results produced using from Approach0 (described
in the previous section). The MSM team at ARQMath-3 use Reciprocal
Rank Fusion (RRF) to combine sparse TF-IDF and BM25 retrieval
models with a RoBERTa dense retrieval model. Final rank scores for
sources are computed using Equation 5.1. In the RRF equation, R is
the set of formula and text rankings, and r(d) is the rank of document d.
MSM achieved nearly the same nDCG′ as the top participating system
at the ARQMath-3 answer retrieval task (0.504 vs. 0.508).
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RRF (d) =
∑
r∈R

1
60 + r(d) (5.1)

5.4 Unified Formula + Text Representations

Combining results from separate indexes for different representations
can often produce useful results quickly, especially for sparse retrieval
models. However, the text-notation interactions described in Section 2
provide important context that is missing when formulas and text are
indexed separately. We next consider searching unified representations
for formulas and text.

DLMF was the earliest unified sparse retrieval model indexed formula
and text tokens together, using a variation of TF-IDF for scoring (Miller
and Youssef, 2003). More recently Latent Dirichlet Allocation (LDA)
has been used to weight formula and text tokens. In these sparse models,
formulas are represented as LATEX tokens (Yasunaga and Lafferty, 2019)
or linearized tree tokens (Thanda et al., 2016), and a single inverted index
is used to retrieve and score sources. MIaS used a similar approach (Sojka
et al., 2018).

The introduction of the ARQMath answer retrieval task coincided
with the emergence of transformer-based dense retrieval models. A
common technique is using a pre-trained transformer (e.g., BERT
variants) that is fine-tuned using pairs of MSE questions and answers
with their associated assessor relevance ratings. Reusch et al. (2022)
studied dense retrieval using ColBERT and ALBERT models. To fine-
tune ALBERT, 1.9M triples containing questions with one relevant and
one non-relevant answer were fed to the model. The model attempts to
match assessor scores by classifying answers using the learned vector
embedding for the [CLS] token that starts each token sequence. A
similar approach was used to fine-tune ColBERT, but using more
relevant and non-relevant answers. Somewhat surprisingly, both models
proved less effective than sparse retrieval models that participated in
the ARQMath-3 shared task.

In subsequent work, Reusch et al. (2024) explored how mathematical
formulas affect a transformer model’s training. They found that trans-
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former models consider formulas when scoring relevance for answers
to a given math question, but a study of the transformer attention
weights for formula and text tokens suggests that structural relation-
ships between formula tokens are lost, and that the attention maps do
not capture associations between variables appearing in both questions
and answers.

This finding motivates creating transformer-based models that can
better capture formula structure and interactions. One approach is
adding additional tokens. The MathPredictor model (Jo et al., 2021)
extends BERT’s tokenizers to support 2,651 new tokens. This addresses
the BERT WordPiece tokenizer’s oversegmention of LATEX commands
such as ‘\overline’, which is split into three tokens: {\, over, ##line}.
This allows formulas such as h (in LATEX expressed as $\overline h$)
to be correctly tokenized as {$, \overline, h , $ }. The model was then
fine-tuned using masked tokens in formulas.

A hybrid approach that incorporates a unified representation with
independent formula and text searches is taken in the MABOWDOR
system (Zhong et al., 2023). The PyA0 toolkit is used for preprocessing
mathematical formulas before tokenization by WordPiece. PyA0 canoni-
calizes math tokens by merging those likely to be semantically identical,
such as \emptyset, \empty, and \varnothing. 1,000 new math tokens
are added to the token vocabulary, and sources are then annotated
with the formula math tokens, which are treated the same as regular
text in dense embeddings. The final search combines dense and sparse
retrieval, and uses both independent and unified formula+text represen-
tations. A unified single-vector dense retriever is used for passage-level
representations of formulas and text (DPR, Karpukhin et al., 2020).
To take advantage of precise formula symbol and structure matching,
formulas are searched independently using Approach0 (combining path-
based sparse retrieval with structural alignment). A dense embedding-
augmented sparse retriever (SPLADE, Formal et al., 2021) is also used
to search the text independently, and these different retrieval results
are combined.

For the MABOWDOR unified representation dense passage retriever,
a new pre-training dataset for the math domain was created using Coco-
MAE, a retriever architecture and pretraining scheme. The pretraining
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task is Masked Auto-Encoding (MAE), which is similar to masked token
pre-training but attempts to decode whole input passages with masked
tokens using a decoder. For the final ranking, search results from each
component are merged using a convex linear interpolation. This system
currently archives the highest P′@10 for ARQMath’s answer retrieval
task.

In an alternative approach, MathBERT (Peng et al., 2021b) creates
a unified formula+text representation using linearized OPT tokens
and LATEX formula representations. BERT is pre-trained using Masked
Language Modeling, Context Correspondence Prediction (similar to
next sentence prediction), and Masked Substructure Prediction (for
masked formula tokens). Using an improved tokenization approach for
math formulas, this model archives better effectiveness compared to
BERT in tasks such as formula topic generation (predicting the topic
(tag) associated with a mathematical formula, using a TopicMath-100K
dataset created from arXiv papers), and formula ‘headline’ generation
creating a concise description of a formula using the formulas and
descriptions in a MSE question (using EXEQ-300K, Yuan et al., 2020).

Researchers then used MathBERT’s language model for retrieval
and other downstream task such as automatic short-answer grading
(Zhang et al., 2022) using an integer scale from 0 to 4. The MathBERT
model is fine-tuned for this task, with pairs of questions and student
responses. Additional information including the grade scale and example
graded answers are also used for in-context meta-learning.

5.5 Using LLMs for Math-aware Search

The use of LLMs to generate question answers and re-rank have been
explored using ARQMath’s answer retrieval task. Satpute et al. (2024)
considered both general LLMs like GPT-4 and math LLMs like ToRA
to generate answers for ARQMath topics. These answers were then used
as queries to search for relevant answers. This can help by transforming
the query into a format more similar to sources in the collection, as
the query and collection are expressed as answers. For each question,
an embedding (using BERT_cocomae) of the generated answer was used
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to search dense embeddings for ARQMath answers. Cosine similarity
was used to find the most similar answer in the collection for generated
answers. This approach currently obtains state-of-the-art full-ranking
results for the ARQMath answer retrieval task, with nDCG′ of 0.486
(vs. 0.464 of BERT_cocomae).

In another study, the applications of general LLMs, (LLaMA-2 and
Orca-2) were studied for three tasks in math information retrieval:
relevance assessment, data augmentation, and point-wise re-ranking
(Mansouri and Maarefdoust, 2024). This study was done using ARQ-
Math. For each task, an appropriate system message is used; for example,
to assess the relevance of a question answer, the system prompt was
created based on the ARQMath assessment protocol:

You are a math professor who will assess the relevance of
an answer to a given math question.

The results of this study revealed that while general LLMs are not yet
suited for relevance assessment or re-ranking, data augmentation from
the Orca-2 LLM system may be useful for expanding the ARQMath
training set for use in fine-tuning neural math answer retrieval systems.
The data augmentation process is performed by generating additional
relevant answers for training topics using LLMs. We further discuss the
use of LLMs for data augmentation in the next section.



6
Math Question Answering

Solving math problems by computer has been a goal for artificial
intelligence research for a long time, beginning with work by Bobrow,
Feigenbaum, Feldman, and Charniak in the 1960’s (Zhang et al., 2020a).
More recently, an exciting challenge is the AI Mathematical Olympiad
(AIMO)1, which is awarding a financial prize for the first publicly
available AI model capable of winning a gold medal at the International
Mathematical Olympiad (IMO).

In this section we focus on the rapidly developing area of math
question answering. Work in this area recently spiked with the advent
of transformers and Large Language Models (LLMs) trained on large
volumes of text. These models may be further trained on mathematical
text specifically (e.g., with formulas in LATEX), and can convert ques-
tions in mathematical prose to formulas, program code, and answers
with accompanying explanations. Further, they can be used to generate
additional training data by reformulating questions and generating ques-
tion variations, which may then be used to retrain and improve a model.
However, there are currently limitations in effectiveness arising from
the types of math representations used, and challenges with producing
sound mathematical reasoning.

1https://aimoprize.com/
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https://aimoprize.com/
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As in the previous two sections, we will begin with an overview of
existing test collections for math question answering, followed by an
overview of systems that have tackled the challenges in these benchmarks.
A summary of the evaluation metrics used, and comparisons with
formula and math-aware search may be found in Section 3.

6.1 Test Collections for Math QA

A summary of available test collections is shown in Table 6.1. Math
question answering test collections require target answers to be generated
or extracted for questions, in order to compute accuracy, the percentage
of questions that match the target value for a question. These target
values are often a numeric quantity, multiple choice alternative, or a list
of values. Some collections also require open responses (i.e., free text),
in which case text similarity measures are used for evaluation. Most
test collections are either focused on or include math word problems,
where questions are written primarily with words rather than numbers
or equations (see Example 3.2).

Earlier test collections such as Dolphin18K (Huang et al., 2016)
focus on arithmetic and algebraic problems, with solutions provided
only in the form of equations or final answers. MathQA (Amini et al.,
2019) contains 37k English multiple-choice math word problems built on
AQuA-RAT (Ling et al., 2017), with efforts aimed at addressing issues
in AQua-RAT including incorrect solutions and problems that required
brute-force enumeration. Despite the corrections to the AQuA-RAT
dataset, around 30% of MathQA solutions had inconsistencies.

ASDiv (Academia Sinica Diverse MWP Dataset) (Miao et al., 2020)
contains 2.3K math word problems, with each question labeled with a
problem type (e.g., Basic arithmetic operations, Aggregative operations)
and grade level to show the difficulty level of the problems. This dataset
provided different diversity metrics which helped the development of
future datasets. This includes GSM8K (Cobbe et al., 2021), which
contains 8.5K school math problems created by human problem writers,
with 1K problems as the test set. These problems need 2 to 8 steps to get
to the solution, using primary calculations with basic math operations
to find the answer. This dataset contains questions that need basic
knowledge, such as the number of days in a week.
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Table 6.1: Math Question Answering (QA) Test Collections. QA systems communi-
cate one answer which may be a formula, computer program, value (e.g., numbers,
lists), multiple choice alternative, and/or written responses. Many questions come
from standardized tests and math competitions.

Test Collection Questions Answers Metrics

Math Problems

Dolphin18K (2016) Arithm./algebra Number set Accuracy◦

AQuA-RAT (2017) MC△ WP† Rationale
+ chosen answer

Accuracy,
Perplexity,
Expert ration.
+ BLEU

SemEval (2019) SAT questions Numeric or
chosen answer

Accuracy

MathQA (2019) MC WP Rationale
+ chosen answer

Accuracy

ASDiv (2020) WP Equation and value Accuracy
MATH (2021) AMC, AIME Step-by-step soln

+ final answer
Accuracy

GSM8k (2021) WP Step-by-step soln
+ final answer

Accuracy

DROP (2019) Paragraph questions Number, entity, etc. Accuracy,
token F1,EM

LILA (2022) WP Numbers or formulas token F1
AIMO (2024) Int’l. Math. Olympiad

(IMO) questions
Integers in [0,999] Accuracy

Math Problems with Graphical/Visual Content

GeoQA (2021) MC geometry problems
w. diagram

Chosen answer Accuracy

UniGeo (2022) MC w. diagram
(GeoQA extension)

Chosen answer Accuracy,
Accuracy@10

MathVista (2023) Figure QA, WP, geometry
problems, textbook ques-
tions, VQA

Chosen answer or
numeric

Accuracy

Math-Vision (2024) Math reasoning with vi-
sual elements

Step-by-step soln
+ final answer

Accuracy

TabMWP (2023) MC WP w. tabular data Number or text Accuracy

Open Response

ARQMath-3 (2022) ARQMath-3 MSE Qs Written response
(formulas + text)

Relevant MSE
answers,

+ token F1,
+ BERTScore

MathDial (2023) LLM-simulated student
Q. or comment

(GSM8k questions)

Responses to Q.
and comments

Expert resp.
+ sBLEU,
+ BERTScore

†Word Problems; ◦Accuracy = test@1 = % correct ≈ Exact Match (EM)
△Multiple Choice

SemEval 2019 Task 10 (Hopkins et al., 2019) provides question
sets from MathSAT (Scholastic Achievement Test) practice exams in
three categories: Closed Algebra, Open Algebra, and Geometry. Most
questions are multiple choice, with some numeric answers. This test
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collection contains 3860 questions, of which 1092 are used as the test
set. The MATH dataset (Hendrycks et al., 2021) also contains multiple
choice questions, developed from American high school math competi-
tions including AMC 10/122, and AIME3. This dataset provides 12,500
problems (7,500 training and 5,000 test). Problems are assigned diffi-
culty levels from 1 to 5, and categorized into seven areas (Pre-algebra,
Algebra, Number Theory, Counting and Probability, Geometry, Inter-
mediate Algebra, and Precalculus). Answers in this dataset include
step-by-step solutions in LATEX with final answers annotated explicitly,
making it suitable for training models that provide explanations for
their answers.

Other test collections aim to test mathematical reasoning by systems.
The DROP (Discrete Reasoning Over the content of Paragraphs) test
collection (Dua et al., 2019) is a reading comprehension task where a
paragraph is provided along with questions about the passage. DROP
has often been used to evaluate the reasoning capabilities of large
language models such as Gemini and PaLM.

After DROP, LILA (Mishra et al., 2022) was developed to unify
various mathematical reasoning benchmarks. LILA augments 20 ex-
isting datasets with solution programs added to answers, along with
instructions for producing answers in natural language. Answers are
represented as Python strings that print a number, expression, list, or
other data structure. For each task, instruction annotations are pro-
vided with a clear definition of the task, a prompt providing a short
instruction, and examples to help learning by demonstration. System
effectiveness is measured using the token F1-score between the model
output and the target answer.

Questions with graphics. Plots, diagrams, and geometric con-
cepts are commonly used in math. While text-based problems have
been investigated extensively, visual math question-answering has been
explored far less. In recent years there have been attempts to auto-
matically answer questions that include graphics such as tables and
diagrams. One of the earliest such MathQA tasks focused on retrieving

2https://maa.org/amc-10-12-information-and-registration/
3https://artofproblemsolving.com/wiki/index.php/American_Invitational_M

athematics_Examination

https://maa.org/amc-10-12-information-and-registration/
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
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formulas from Wikidata in response to questions in natural language
(Schubotz et al., 2018). An example test collection is TabMWP (Lu
et al., 2023), which contains 38K open-domain grade-level problems
that require mathematical reasoning on both textual and tabular data.
To solve these problems, systems need to consult data in given table
cells.

GeoQA (Chen et al., 2021a) is a geometric question-answering
dataset. Each question provides a textual description of the problem
and its related diagram, and systems choose from answers given as
multiple choice alternatives. UniGeo (Chen et al., 2022a), expanded
this dataset, by including 4,998 calculation problems (from GeoQA)
and adding 9,543 proof problems.

MathVista (Lu et al., 2024) provides 6,141 examples of mathematical
and visual tasks and studies several large language models, including
multimodal models.4 These questions focus on five tasks: figure ques-
tion answering, geometry problems, math word problems, textbook
questions, and visual question answering through multiple-choice or
free-form questions. Math-Vision (Wang et al., 2024) is another recent
test collection for studying large multimodal models for math questions
with visual content, providing 3,040 diverse problems.

Open response questions and dialogues. ARQMath-3 (Man-
souri et al., 2022a) had a pilot open domain question-answering task,
which used the same topics as the math-aware search task. Evaluation
measures were computed from lexical overlap of tokens, where answers
are treated as a bag of tokens, using the maximum F1 score between
system answers and each relevant answers from the answer retrieval
task. Using a similar approach BERTScore (Zhang et al., 2020b) is also
used to measure token overlap.

There has also been early work on creating test collections for con-
versational math dialogue systems.5 For example, MathDial (Macina
et al., 2023) provides math tutoring dialogues produced by connecting
an expert annotator, who role-plays a teacher, with an LLM that simu-
lates the student working through problems, including reasoning errors.

4https://mathvista.github.io/.
5The use of clarifying questions in Math Stack Exchange has been studied using

comments on math questions (Mansouri and Jahedibashiz, 2023).

https://mathvista.github.io/
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The dataset has 3,000 tutoring conversations grounded in math word
problems from GSM8k. The dataset aims to capture nuances of student-
teacher interactions, with a focus on multistep math problem-solving
scenarios. The main task in MathDial is Tutor Response Generation,
aiming at modeling the teacher in a dialogue by generating follow-up
turns to guide the student to solve problems. An earlier example of
a related system is MathBot (Grossman et al., 2019), a text-based
tutor capable of explaining math concepts providing practice questions
and offering feedback to students. Tasks such as generating clarifying
questions, and detecting ambiguous questions can be studied using these
test collections and systems.

6.2 Solving Math Word Problems

In this section we focus on systems that solve math word problems,
which have been the most commonly studied math question type.

Symbolic and logical rule-based approaches. Traditional ap-
proaches to solving math-word problems are rule-based. The word
problem is first converted to a symbolic representation (e.g., first-order
logic) which is solved using an inference algorithm. The STUDENT
system (Bobrow, 1964) solved algebraic problems in Lisp using string
transformations to generate symbolic problem instances.

This basic approach remains effective to this day. For example, the
AiFu model (Liu et al., 2019) converts word problems into a logical
representation using rule-based templates. This representation is based
on assertional logic where mathematical objects are formalized as con-
stants, variables, concepts, functions, or relations. For example, “the
integer x equals to 3”, is transformed into

Integer(x), Equal(x,3).

This representation is then translated via rules to a math representation
for the the Satisfiability Modulo Theories (SMT) solver Z36 to produce
a solution. The rule-based translation uses two templates for unification:
one for known concepts and operators, and the other for new entities.

6https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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This model had the highest accuracy among participating teams in the
SemEval 2019 task.

Generating and computing solutions from operator trees (OPT) is
also a common approach for solving math word problems, as illustrated
in Example 6.1. These trees represent the solution quantity, and a
variable to which this solution is assigned for the math-word problem:

There are 3 boys and 5 girls in a group. Each person wants
to buy 9 pencils. How many pencils do they need to buy
altogether?

As shown in Example 6.1, the question is transformed into an OPT
with constants defined in the question at leaves in the tree. Answers
are produced by applying operations bottom-up (i.e., evaluating the
expression). In one approach the generated OPTs use four basic binary
operations, with quantities at the leaves (Roy and Roth, 2015). The
ALGES system (Koncel-Kedziorski et al., 2015) uses a similar approach,
where the OPT includes a variable for the answer χ in the tree attached
to an equivalence operator (referred to as an equation tree).

Example 6.1: OPT for (3 + 5) × 9 generated from a word problem, and
variation with answer variable χ (equation tree).

✕

+ 9

3 5

✕

+ 9

3 5

=

(a) Operator Tree (b) Equation Tree

𝛘

For questions involving properties of elements in sets, it is important
to correctly identify variable quantifiers to distinguish universal and
existential quantification (e.g., ∀x, ∃x). Roy and Roth train a binary
SVM classifier to select quantifiers as needed, and inserts them at leaves
of the tree. The lowest common ancestor (LCA) node between pairs
of quantifiers are used to capture constraints. The ALGES system
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instead generates all possible equation trees without dropping irrelevant
quantifiers, and then uses Integer Linear Programming to score the
likelihood of each tree using local and global discriminative models.

Early machine learning approaches. Several statistical machine-
learning approaches have been investigated for math-word problems.
Like rule-based approaches, they first produce a word problem rep-
resentation, from which the answer is then generated algorithmically.
The ARIS system (Hosseini et al., 2014) was developed for arithmetic
problems using addition and subtraction. Steps toward the solution are
represented as a state sequence, with one state per sentence. States
contain subjects and objects from the question, each of which have
associated entity triples. Entity triples have quantities (i.e., constants
or variables), types, and attributes.

Example 6.2: ARIS sentence state generation (Hosseini et al., 2014).
Each state has one or two containers in black boxes.

N: 5
E: pen
A: Black

N: 5
E: pen
A: Blue

N: 5-L1
E: pen
A: Black

N: 5
E: pen
A: Blue

N: J0+L1
E: pen
A: Black

N: 8
E: pen
A: Black

N: 3
E: pen
A: Black

N: 5
E: pen
A: Blue

N: 5-L1
E: pen
A: Black

N: 5
E: pen
A: Blue

N: 8
E: pen
A: Black

Sarah had 5 black pens and 3 blue pens. She gave some of her black pens to Jack. Jack has 8 
black pens. Sarah has 3 black pens left. How many black pens did Jack have?

S1 S2 S3 S4

S0

Sarah Sarah Sarah Sarah

JackJack Jack

Sarah had 5 black pens 
and 3 blue pens.

She gave some of her 
black pens to Jack. Jack has 8 black pens. Sarah has 3 black pens 

left.

As an example, consider this math word problem, with two subjects
possessing quantity containers (Sarah and Jack):

Sarah had 5 black pens and 3 blue pens. She gave some of
her black pens to Jack. Jack has 8 black pens. Sarah has 3
black pens left. How many black pens did Jack have?

The ARIS state representation for each sentence is shown in Example
6.2, which is produced using the Stanford NLP library. J0 shown for the
second sentence represents the question quantity, the number of black
pens Jack had initially. Determining this value depends also on variable
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L1, the number of pens that Sarah gave to Jack. After the sentence
state representations are generated, constraints in the question are used
to compute the question answer. Here we solve for J0 by noting that
Jill’s final ‘Black’ pen entity count is L1 = 5 − 3, and Jack’s ‘Black’ pen
entity is J0 = 8 − L1, giving 6 black pens that Jack originally had.

State transitions are identified by verbs classified by an SVM classi-
fier using WordNet-based and other features. Verbs are categorized into
three groups: (1) observation, (2) positive (increase), and (3) negative
(decrease). For sentences with two containers (i.e., subjects/objects with
entities), four other categories are considered: (4) positive transfer (from
second to first container), (5) negative transfer (from first to second
container), (6) construct (increase in both containers), and (7) destroy
(decrease in both containers).

Recently deep learning techniques are among the strongest ap-
proaches for math-word problems. The earliest attempt, Deep Neural
Solver (DNS) (Wang et al., 2017b) used a seq2seq model to translate
problem statements into equations (i.e., infix OPT representations) by
embedding question text in a vector and then generating a formula
expression starting from the question vector. The generated expres-
sion is evaluated to produce an answer. Numbers in the question are
mapped to enumerated variable tokens and stored in a dictionary (e.g.,
{(n1, 3), (n2, 5), (n3, 9)}). Numbers are replaced by their enumeration
variable in the question text before being passed to a sequence-to-
sequence (seq2seq) model that generates an equation over those vari-
ables. The variables of the equation are then replaced by their values
from the dictionary, and the expression value is computed. Using the
‘pencils’ example above used to illustrate rule-based approaches, the
architecture of the model is shown in Example 6.3.

After DNS was introduced there were several attempts to improve
generated OPTs through better structural constraints. The multi-
encoders and decoders model (Shen and Jin, 2020) uses both seq2seq
and graph-based encoder/decoders. Two graph encoders are defined
using GraphSage (Hamilton et al., 2017). The first is a dependency parse
tree capturing relationships between words in the sentence. Initial token
embeddings used for the tree come from the sequence-based encoder. A
second graph-encoder captures numerical comparisons: nodes represent
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Example 6.3: Seq2seq OPT generation for word problems
(Wang et al., 2017b).

There are 3 boys and 5 girls in a group. 
Each person wants to buy 9 pencils. 
How many pencils do they need to buy altogether?

There are n1 boys and n2 girls in a group. 
Each person wants to buy n3 pencils. 
How many pencils do they need to buy altogether?

Encoder Decoder

Number Mapping
n1 = 3
n2 = 5
n3 = 9 

x  = ( n1 + n2 ) ✕ n3

Equation: x=(3+5)✕9 → Solution: 72

numbers from the question with relations > or ≤ defining constraints
that were ignored by DNS when mapping values to tokens. Sequence
and tree-based decoders are used. The decoders produce operation and
value sequences that correspond to OPT traversals that can be used to
compute the final answer using a simple stack-based algorithm.

For the equation (n1 + n2) × n3, the sequence decoder generates
an OPT preorder traversal of the expression in Example 6.1, with
arguments before operations (n1n2 + n3×). The tree decoder instead
generates an OPT postorder traversal with operations before arguments
(× + n1n2n3). The operation sequence used is selected by maximum
decoder likelihood. This model achieves higher accuracy than DNS on
the Math23K dataset (5-fold cross-validation of 76.9% vs. 58.1%).

Transformers. Solving math word problems automatically has
gained increasing attention since the advent of transformers in 2017
(Vaswani et al., 2017). Transformers integrate surrounding context in
token sequences by consulting all other tokens embeddings in the input
over a series of stages. This produces contextually-enriched embedding
vectors that dramatically improved their usefulness in prediction and
generation tasks.

Thinking back to information tasks in Section 1, with a transformer
the input tokens act as an initial information source, from which we
produce a new information source containing contextualized token
vectors. The contextualized vectors are shaped by token co-occurrence
statistics seen in a large collection of sources used for training. In terms
of information tasks performed by the transformer:
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Retrieve
Consult: all current token vectors are examined and weighted

using a self-attention mechanism used in generating new
vectors.

Query: input tokens are annotated with control tokens (e.g.,
[CLS], [SEP], [MASK]) to (1) drive parameter learning,
and (2) allow users to ‘program’ outputs in query prompts.

Analyze
Annotate (Designers/Users): input annotated with addi-

tional tokens, e.g., [CLS] for the first ‘classification’ token,
[SEP] for ending sentences/sections, and signaling answer
start (e.g., [A.]). Positional encoding vectors mark input
position (e.g., integer enumeration) and/or token relation-
ships. These annotations are more detailed and expressive
than for earlier models.

Index: network weights represent language statistics in a collec-
tion, and can be used to produce dense vector indexes.

Synthesize
Apply: token embeddings are generated in steps, applying net-

work weights and attention to update token vectors. This
uses ‘depth’ to improve generalization (a known property of
deep nets). Training tasks apply network weights to make de-
cisions (e.g., guess masked tokens) and then update weights
using backpropagation.

Communicate: contextualized token vectors are communicated
in a tensor, providing a new information source. Learned net-
work weights specifying the embedding function represented
in the network is another communicated information source.

As described in Section 2, ‘pre-training’ transformers on large text
corpora is the norm, followed by ‘fine-tuning’ to produce outputs for
specific tasks. ‘Pre-training’ (i.e., initial language model learning) gen-
erally involves imitative games that require predictions after token
sequence manipulations such as token masking and re-ordering, while
fine-tuning requires replacing the output layers of the network for the
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new imitative game(s) of the specific task the network will be used for
(e.g., classification or generation tasks).

As for retrieval, we again find that token representations used for
math with transformers are important. Simple tasks such as generat-
ing answers to questions adding and subtracting two numbers were
explored early on (e.g., ‘what is 52 plus 148?’), using a T5 seq2seq
model (Nogueira et al., 2021). This was motivated by earlier work where
for tasks such as reporting the maximum value of a list of numbers,
a BERT model obtained an accuracy of 52% (Wallace et al., 2019).
This poor performance was caused partly the default tokenization by
WordPiece, which prevented correctly encoding numbers.

The first applications of BERT model to math word problems
was performed using the AQuaA-RAT collection (Ling et al., 2017).
The focus of this work is fine-tuning, including a proposed Neighbor
Reasoning Order Prediction (NROP) coherence loss (Piękos et al., 2021).
This considers whether steps in the rationale for an answer are in their
original order, or have been swapped. Fine-tuning with this task and
loss function improved accuracy by roughly 10%.

Subsequent work focused on improving mathematical reasoning
output for transformers. MWP-BERT (Liang et al., 2022) used BERT
and RoBERTa along with three families of fine-tuning tasks/objectives.

Self-supervised (questions): (1) masked language modeling, (2)
number counting (i.e., quantities in a word-problem), and (3)
number type grounding (e.g., integer, real).

Weakly-supervised (questions with answers): (1) answer value
type prediction (i.e., discrete or continuous), (2) context-answer
type comparison (i.e., whether question quantities have the same
type as the answer), and (3) number magnitude comparison (i.e.,
predict the relative answer size vs. question quantities).

Fully-supervised: (1) operation prediction, and (2) tree distance
prediction. Operation prediction infers the operator between two
quantity nodes in the solution OPT from five types: {+, -, ×,
/, ^}. Tree distance prediction estimates differences in depth for
numbers in the solution tree.
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These different training objective families in isolation produce similar
accuracy on Math23K dataset, with the fully-supervised objectives
providing the highest accuracy. MWP-BERT is fine-tuned on MathQA.
For Math23K it achieves 82.4% accuracy vs. 58.1% for the DNS model (5-
fold cross-validation). Similarly, for the Math23K test set MWP-BERT
achieves 96.2% accuracy vs. 53.6% for the DNS model.

6.3 LLMs and Mathematical Reasoning

The next generation of math-word problem solving models use Large
Language Models (LLMs) which are (roughly) very large transformer
models trained on very large amounts of data, and embedded within a
text generation system (e.g., a recurrent neural network). The capability
of large language models to solve advanced math questions is closely
studied when a new LLM is developed, and math-word problems are
commonly used for this purpose. General LLMs are not trained specif-
ically for math questions; open-source models such as Mistral (Jiang
et al., 2023) and LLaMA (family) have been used to fine-tune math-
specific language models, which helps improve the responsiveness of
models to math-focused system prompts.

From prompts the model can be given context and instructed on
producing specific outputs, providing a way to indirectly ‘program’
outputs as described for transformers in the previous section.7

Improving LLM math question answers. A common, non-automated
way to improve answers without retraining is prompt engineering, where
an LLM is prompted multiple times, and then a preferred answer is
selected. Aside from this, there are four common methods for improving
answers to math questions given to LLMs vs. directly providing a word
problem in a prompt:

Instruction tuning:
a labeled dataset of (prompt, response) pairs is used for additional
training of the model, i.e., fine-tuning. Often done with state-of-

7For users, prompt=query: these are requests for generated information sources.
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the-art language models such as GPT-4 to generate high-quality
training data.

Chain-of-Thought (CoT) prompting (Wei et al., 2022):
the prompts include example questions and answers that include
a step-by-step reasoning process. The goal is to exploit the LLM
tendencies to mimic patterns in the prompt, in anticipation of
a similar reasoning step pattern appearing in the answer, and
help with producing correct answers. COT is distinct from few-
shot prompting (see Example 6.4), where only questions and final
answers are provided within examples included in the prompt.
CoT can also be used with zero-shot or few-shot prompting, by
simply adding "Let’s think step-by-step" at the beginning
of the prompt.

Program-of-Thought (PoT) (Chen et al., 2022b):
similar to CoT. Instead of natural language, computer programs
represent the solution process formally. PoT frees LLMs from
having to generate equations in natural language, and to instead
provide explicit computational steps. In a zero-shot setting (i.e.,
giving no example question and answer in the prompt), PoT has
produced a 12% improvement over CoT for math word problems.

Program-Aided Language models (PAL) (Gao et al., 2023):
interleaves natural language (as in CoT) and programming lan-
guage statements (per PoT) in answers. The final solution is a
program that is evaluated by an interpreter.

Example 6.4: Standard prompting (left) vs. Chain-of-Thought (right).
Input is in grey boxes. Adapted from Wei et al. (2022).

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls 
does he have now?
A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to make 
lunch and bought 6 more, how many apples do they have?

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls 
does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11
Q: The cafeteria had 23 apples. If they used 20 to make 
lunch and bought 6 more, how many apples do they have?

A: The answer is 27.
A: The cafeteria had 23 apples originally. They used 20 to 
make lunch. So they had 23 - 20 = 3. They bought 6 more 
apples, so they have 3 + 6 = 9. The answer is 9.
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Math-specific LLMs. Most research on math-specific LLMs focuses
upon input token representations and prompts, and expanding datasets
for fine-tuning general models. One of the earliest math-specific LLMs
is Minerva (Lewkowycz et al., 2022). This LLM is based on the PaLM
(Pathways Language Model) model, and is fine-tuned on 118GB of sci-
entific and mathematical text. Minerva can correctly generate LATEX for-
mulas, which is challenging for general LLMs. With proper tokenization,
formulas such as E = mc2 are processed as $E=mc^2$, and not the
single token Emc2.

To improve answers, Minerva uses CoT prompting with several
step-by-step solutions to questions before posing the question to be
answered. It also generates multiple solutions, and then uses majority
voting to select the most likely final answer. From manually analyzed
samples, the most frequent issues in responses include incorrect reason-
ing, incorrect calculation, and question misunderstanding. For example,
for the question:

If
√

400 =
√

81 +
√

n, then what is the value of n?

Minerva infers that 400 = 81 + n, and then correctly provides 319 as
the final answer, but for the incorrectly inferred formula.

LLEMMA (Azerbayev et al., 2024) is another model using Chain-
of-Thought. The model is built atop LLaMA-Code, and fine-tuned
on another dataset Proof-Pile-2 containing 55 billion tokens from
mathematical and scientific documents. The documents are taken from
three large collections: arXiv, open-web-math, and algebraic-stack. After
fine-tuning, LLEMA is more effective at answering questions from
GSM8K and MATH than Minerva.

MAmmoTH (Yue et al., 2023) uses hybrid CoT and PoT to build a
new dataset. This model is a fine-tuned version of LLaMA-2 and Code
LLaMA, using a new dataset MathInstruct for instruction-tuning.
MathInstruct is compiled from 13 math rationale datasets (7 existing),
using both chain-of-thought (CoT) and program-of-thought (PoT) ra-
tionales. To create this dataset, GPT-4 is used to generate programs,
and the values generated by programs are verified with ground truth.
The dataset contains 260K (instruction, response) pairs with 72% using
COT, and 28% using PoT. Example 6.5 shows CoT and PoT pairs. The
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authors report that PoT generally provides better results than CoT.
Particularly for open-form questions, algorithmic reasoning was found
to be more effective for complex math problems.

Example 6.5: Sample instructions and responses from the MathInstruct
dataset. Grey boxes show PoT and CoT instructions, and
white boxes show responses.

If circles x and y have the same area and circle x has a 
circumference of 12 π, half of the radius of circle y is : ? 
Let's write a Python program to solve it.

n0 = 12.0 
t0 = n0 / 2.0 
answer = t0 / 2.0 
print(answer)

There are 3 boxes of cereal. One box holds 14 ounces of 
cereal. Another box holds half the amount of the first box 
and 5 ounces less than the third box. How much cereal is 
there in all 3 cereal boxes?

First = 14 oz Second = (1/2) * 14 = 7 oz 
Third = 7 + 5 = 12 oz 14 + 7 + 12 = 33 
oz There are 33 ounces of cereal in 
those 3 boxes. The answer is 33

PoT

CoT

ToRA (Tool-integrated Reasoning Agents) (Gou et al., 2024) intro-
duces a new reasoning representation interleaving natural language and
the use of external libraries. Given a question, ToRA first generates
reasoning in natural language, which continues until a program library
is better suited (e.g., for equation solving). ToRA then generates a
program from the natural language reasoning, and the output is further
processed for adjustments, sub-task solving, and answer finalization.
This process is continued until the final answer is represented using
the LATEX “\boxed{}” command, as illustrated in Example 6.6.8 To
fine-tune LLaMA-2, the TORA-CORPUS was produced using GPT-4,
synthesizing reasoning trajectories for the GSM8k and MATH training
sets.

Improving LLMs through fine-tuning on augmented data. A common
technique for expanding and/or improving existing datasets involves
transforming existing question/answer pairs to produce new ones (i.e.,
data augmentation).

For example, MetaMathQA (Yu et al., 2024) augments two earlier
datasets, GSM8K and MATH. Three techniques are used for data aug-

8Note the similarity to the types of answers seen in CQA forums like Math Stack
Exchange, where code is part of a larger answer narrative.
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Example 6.6: ToRA reasoning interleaving natural language and
program-based tool use. Adapted from Gou et al. (2024).

Suppose that the sum of the squares of two complex numbers 𝑥 and 𝑦 is 7 and the 
sum of their cubes is 10. List all possible values for 𝑥 + 𝑦, separated by commas.

Problem

Let’s use `Sympy` to calculate and print all possible values for 𝑥 + 𝑦,

from sympy import symbols, Eq, solve, simplify

def possible_values():
      x, y = symbols('x y’)
      eq1 = Eq(x**2 + y**2, 7)
      eq2 = Eq(x**3 + y**3, 10)
      solutions = solve((eq1,eq2), (x, y))
      sums = [simplify(sol[0] + sol[1]) for sol in solutions]
      return sums
print(possible_values())

Reasoning

Program

>>> [-5, -5, 1, 1, 4, 4]
Output

Removing duplicates, the possible values for 𝑥 + 𝑦 are \boxed{-5, 1, 4}.
Reasoning

mentation. First, additional reasoning chains are generated for answers.
This is done using few-shot CoT promoting, where questions are ap-
pended to QA pairs that include associated reasoning for answers. This
few-shot prompt is then fed to an LLM to produce an additional answer
with justification. The final answer is compared against the ground-
truth, and incorrect answers are filtered out. The second augmentation
rephrases questions. Examples of rephrased questions are used in a
few-shot query along with the prompt: You are an AI assistant to help
me rephrase questions. Follow the given examples. Answers generated
for rephrased questions had an accuracy of 76.30%, and 80.74% for the
original questions.

The third augmentation uses backward reasoning in the MetaMath
LLM to generate additional questions. Numeric values in questions are
masked with an ‘X’, and the LLM is then asked to predict the value
given the answer. The backward reasoning starts from the answer, and
then generates reasoning steps to infer the masked numeric value in the
question. The final augmented data set is used to fine-tune LLaMA-2.
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While most LLMs achieve their highest effectiveness with a large
number of parameters, Orca-Math (Mitra et al., 2024) instead fine-
tunes smaller language models. Similar to MetaMath, a new dataset
is introduced and then fine-tuning is done over three iterations. The
Orca-Math-200K dataset is constructed from previous datasets such
MathQA, and GSM8K with a total of 36,217 problems. This dataset
was augmented by modifying the original word problems. GPT-4-Turbo
is used with few-shot examples to generate new math word problems,
and then prompted to convert the question into a statement using the
answer to the question. Then, from the statement, it creates a new
word problem. Solutions for the new problems are also generated by
GPT4-Turbo. A total of 120,445 new problems were generated.

Another augmentation increases the difficulty level of existing ques-
tions, using two agents called the Suggester and Editor. The Suggester
proposes increasing difficulty using techniques such as adding more
variables or increasing certain values. The Editor modifies the original
question based on the suggester’s recommendation. This is done in
two rounds, each time increasing the difficulty further. New problems
that GPT4-Turbo answers in more than 1800 characters were dropped.
37,157 new problems were collected from this step.

After the data augmentation, Orca-Math’s Mistral-7B LLM is fine-
tuned in three steps. First, instruction-fine-tuning is applied using
pairs of questions and answers. In the second step, a teacher-student
learning model is used. For each question four answers are generated (as
‘student’ answers) by a supervised fine-tuned model. Student answers are
compared to answers from GPT-4 Turbo (the teacher) using exact-match
prompting. This is used to create positive and negative examples based
on agreement with the ‘teacher’ answer for further fine-tuning. In the
third step, training samples are generated using two approaches: Direct
Preference Optimization (DPO) (Rafailov et al., 2023) and Kahneman-
Tversky Optimization (KTO) (Ethayarajh et al., 2024). Both approaches
are used for fine-tuning LLMs to align with preferences. With the fine-
tuned model, Orca-Math archives an accuracy of 86.81%, which is higher
than much larger models such as MAmmoTH and MetaMath.
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LLM limitations. We will use a question from ARQMath-2 to illus-
trate some limitations of current LLM models. Prompting Llama-3-
8B-Instruct with: “You are a math professor who will answer math
questions, providing step-by-step solutions.” and the question “can prove
it converges but I don’t know at what value it converges.

∑∞
x=1

(x−1)
2x ”,

leads to the answer shown in Example 6.7.

Example 6.7: Llama-3-8B-Instruct generated answer for a question from
the ARQMath-2 Answer Retrieval task (see main text).

This answer is related to the question, but there is an error in
the fourth expression, where rx should be xrx. Moreover, for a “math
professor”, splitting of the series as:

∞∑
x=1

(x − 1)
2x

=
∞∑

x=1

x

2x
−

∞∑
x=1

1
2x

.

is not obvious, and needs verification/reasoning about convergence for
each of those series. So, if we say it is a “step-by-step” solution, then
the professor has ignored this crucial step.

The system prompt can guide the responses for LLMs. For the same
ARQMath question, we change LLaMA-3 prompt to “You are a math
professor who will answer math questions, providing a hint toward the
solutions, not the whole solution.” The response is shown in Example 6.8.
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Example 6.8: A different Llama-3-8B-Instruct answer when asked to
provided a hint, but not the whole solution.

Here’s a hint to help you get started:

You can try to recognize this series as a variant of
a more well-known series. In particular, consider
the geometric series

∑∞
x=1 rx, where |r| < 1. Can you

see how the given series can be rewritten in a similar form?

Also, think about the fact that the series is a telescoping
series, meaning that many of the terms cancel out when
you sum them up. Can you identify which terms cancel
out and how this might help you find the sum?

Take it from here and see if you can prove that the series
converges and find its value!

The first part of the hint is a good start for the student: it narrows
down the scope where the student can focus or get some ideas. However,
the second part of the hint is completely wrong; this is not a telescoping
series. A telescoping series is one where each term of the series can be
written as a difference of two consecutive terms of a sequence. In the
sense,

∞∑
n=1

(an+1 − an) = (a2 − a1) − (a3 − a2) + · · · .

So, the terms start canceling off and the sum is easy to find. But the
series given in the query cannot be written in this form. So, this second
part of the hint does not help, and is very misleading.

Currently, Chain-of-thought and Program-of-thought are commonly
used to produce more reliable answers to math questions by LLMs. It is
likely that more effective techniques will be used in the future. Current
models need to individually create a dataset for fine-tuning their base
LLM model (e.g., LLaMA-2), often created using a state-of-the-art
LLM (e.g., GPT-4*). However, recently several researchers have warned
against this approach, suggesting that model effectiveness may decrease
when AI-generated data is used for training (Shumailov et al., 2024a;
Shumailov et al., 2024b).
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Final Thoughts and Research Opportunities

In this section we draw our discussion of mathematical information
retrieval to a close, and identify some places where insights might be
found in the future. For this purpose, we return to three key concerns
that we have repeatedly returned to throughout the monograph:

1. the people that IR systems serve and interact with,
2. the information tasks that IR systems perform on behalf of people,
3. how systems and associated processes are evaluated.

Before we close, we also consider some limitations of MathIR systems
from the perspective of individuals.

7.1 What is Next for MathIR?

To try and characterize the space of opportunities for future work
in MathIR, we present two views summarizing topics discussed in
the monograph where we could devote effort to strengthen existing
approaches, and uncover new ones.

The first view is shown in Table 7.1, which presents the informa-
tion needs for the people that play a role in the creation, use, and
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Table 7.1: Information Needs for Mathematical Information Retrieval.

Group Information Needs

Users Query language operations and syntax
Query/results interface usage
How to organize and refind sources
How to create, organize, and search annotations
Data and tools for applying information in sources
Tools for communicating information from sources
Pragmatics: Stopping criteria for ‘satisficing’

Assessors Annotation interface operations and usage
Relevance criteria and intended application
Navigate, link, and search sources & annotations
Pragmatics: ‘reliable’ annotation strategies

Designers &
Researchers

Useful and novel:
Data representations for formulas + text
Retrieval interfaces
Query/question mechanisms
Annotation tools/protocols
Machine learning models
Retrieval models
Data augmentation techniques
Evaluation metrics, pooling, and protocols
Conceptual frameworks / topic maps

Test collections: creation, use, differences
Implementation: planning and execution
Pragmatics: ‘good’ end points for research/dev

projects

evaluation of MathIR systems. These are the users, assessors, and de-
signers/researchers for these systems, which we introduced in Section
1. Improving available information of the types listed, and/or making
these information types more readily available or easy to use present
research opportunities. Additional items that we note here that were
not mentioned earlier include pragmatics. A critical requirement for
productive knowledge work of the types shown in this table is knowing
when to stop, and possibly reflect and report at that point. Improving
our shared knowledge of actionable models and heuristics would be
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beneficial for people involved, and can help inform the use cases from
which IR models and tools are designed and evaluated.

The second view shown in Table 7.2 is for the space of research
opportunities addresses researchers and designers specifically. The rows
and columns are organized by information task, and whether the oppor-
tunities are related to human interaction, system modules that perform
information tasks, or evaluation of interaction and modules. We have
indicated which sections present related material in the column headers.
Please note that this is a first attempt at categorization along these
dimensions. There are opportunities that we have undoubtably missed
here.

Table 7.2: Future Directions for Mathematical Information Retrieval Research

Information Human Interact. System Modules Evaluation
Task (Section 1) (Sections 2, 4-6) (Section 3)

Retrieve

R1. Query Search interfaces
Multi-modal input
LLM prompts/RAG

Autocomplete
Query suggestion
Query perf.
prediction

Log/User studies
Module effectiveness
Benefits of formulas?

R2. Consult Formula/text navig.
Math/text links
Linked math/text

Math entity linking
Text / formula
tokenization

Log/User studies
Math EL effects?
Visual. effects?

Analyze

A1. Annotate User entity cards
(e.g., formulas)
Passages in sources
Source links/groups

Text + math
represent.
Formula represent.

Log/User studies
Retrieval metrics
User bandwidth?
Storage requs.?

A2. Index Org. cards, notes
Org. passages, notes
Org. searches
Org. sources (‘jar’)

Sparse models
Dense models
Sparse + Dense
(e.g., per SPLADE)

Log/user studies
Metrics: size, speed,
effectiveness

Synthesize

S1. Apply Reusable formulas
(e.g., LATEX chips)
Tool integration
(e.g., CAS)
Export sources &
notes

Embedding models
(Pre)training tasks
Learning-to-Rank
Model reduction
(e.g., for LLMs)
Compression: Index,
source, notes, etc.

Log/User studies
Model effectiveness
& efficiency

S2. Communicate Math/text author.
tools
Summarization (e.g.,
LLM)

Data augmentation
Math-focused SERP
Background-
targeted answers

Log/User studies
Test collections
Research papers
Shared task papers
Surveys, task &
concept models
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Currently opportunities in machine learning (e.g., improved/com-
pressed LLM models and prompting), improved formula tokenization
and attention mechanisms for transformers, and finding new approaches
to distilling contextual information into dense embedding vectors and
other representations are important and widely recognized; these each
realize improved applications of available statistical information. Some
other important opportunities include improved query interfaces, anno-
tation tools, and techniques for communication of search/answer results
(e.g., sensitive to the searcher background). Mechanisms that improve a
user’s ability to organize, link, and quickly refind sources and previous
results seem ripe for renewed exploration, provided that we are mindful
of actual user needs, and not overwhelming the user. Integration of
retrieval systems with mathematical tools such as Computer Algebra
Systems (CAS) and theorem provers is another promising direction for
interaction, and possibly also annotating queries and collections.

Another key area is the development of new representations for text
and formulas, including formulas in isolation, but particularly represen-
tations for text, formulas, and possibly other graphics to better capture
context for use in improved sparse and dense indexing.1 Improved in-
dexing and retrieval models remain an important opportunity as well,
being fundamental to IR in general.

7.2 Limitations: What MathIR Cannot Provide

In our experiences working on MathIR, a frequently expressed concern
or hope is that strong systems will remove the need for individuals
to understand the math that they use. Instructors reasonably worry
that some math problem sets can be completed by issuing prompts to
LLMs or questions to search engines, with students receiving complete
or near-complete answers. On the other side, math anxiety is common,
and information from sources that help reduce mental effort and our
risk of failure in addressing hard questions are appreciated, regard-
less of our math comfort level. So while copying retrieved answers is

1OPT and SLT variants, along with MathAMR and PHOC are described in
Section 2, but many variations and other representations are unexplored.
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clearly a problem, could technology instead accelerate our learning and
understanding of new mathematical concepts?

For example, reliable MathIR systems could quickly retrieve or gen-
erate examples of questions and answers for similar problems without
giving away answers. This is not cheating, and seems like an opportunity
to save a lot of time. Unfortunately, after this retrieval step, we arrive at
a fundamental limitation of technology well-known to math instructors.2
Technology allows us to store, illustrate, organize, and retrieve informa-
tion faster than in previous decades (National Council of Teachers of
Mathematics, 2011). This can save significant amounts of human effort
in terms of querying for and consulting sources, but related benefits for
human learning have been modest (Cheung and Slavin, 2013). However
sophisticated our technologies become, they reside outside of a person’s
mind, and there is evidence that deep understanding comes from effort
exerted from inside a person’s mind.

In one psychological study, students who constructed a formula
themselves for the area of geometric shapes organized in a lattice
were more likely to correctly adapt the formula for new shapes than
students who were given the correct formula for the first case (Hallinen
et al., 2021). Interestingly, the authors refer to constructing the correct
formula as searching for the formula; the student must mentally create
and compare alternative formulas as they work on the problem. Their
study supports the idea that engaged exploration and comparison are
needed for deep understanding. Naturally, such engaged thinking takes
time.

To correctly use a source such as a search result hit or question
answer, one must understand it first. Assessing the validity and appli-
cability of an answer requires understanding of terminology, notation,
and associated concepts. We see ample evidence for this on math CQA
sites, where large numbers of posts and comments seek only clarification
of questions and their context, with many asking for clarification of
language and notation choices. Skimming a source online that we don’t
understand provides patterns that might suggest information we could

2These comments apply equally to technological resources for education in general,
and more broadly, knowledge work.
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use, and readily supports copying its contents. Using the same source
to address a problem posed using different notation and terminology
generally requires a deeper understanding of the material.

And so, students completing (non-trivial) problem sets using MathIR
tools will still need to spend time and effort to evaluate returned answers,
and to work through material on their own. For new and challenging
topics, this process of working through the material will remain slow
in comparison to issuing a query or question to a retrieval system.
We do not anticipate that future MathIR systems will remove this
requirement.3

As a more compact summary, here are some limitations for mathe-
matical information retrieval systems:

1. Relevance is strongly influenced by searcher expertise and presen-
tation in sources.

2. Retrieval provides sources, not the understanding of them.
3. Deep human understanding of information, e.g., for application

in new contexts or problems, requires study, exploration, and
experimentation – in other words, time.

That we feel this needs saying at all may surprise some readers, and
perhaps some IR researchers more than anyone. Many other specialized
search domains have similar challenges (e.g., law, medicine, chemistry).
But our experience has been that mathematics, being both a powerful
tool, and in many cultures a source of both pride and shame, sometimes
leads to expressed hopes and concerns at odds with these limitations.

7.3 Some Parting Thoughts

The time at which this work is being written is an exciting time for
mathematical information retrieval. One has a sense that we may be in
for a very surprising leap forward soon, much as we saw for the game
of Go, when AlphaGo applied monte carlo tree search, deep learning
techniques, and reinforcement learning to play the game competitively

3Related to this, we believe that supporting, advancing, and sharing human
understanding is fundamental for societally beneficial academic instruction and
research of all kinds.
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at the international level. Prior to this, many believed that competitive
systems operating in such a vast search space would not be seen for a
long time. AlphaGo was trained through simulating a very large number
of games; the model parameters were learned via a somewhat brute
force process of trial and error, in order to estimate reliable probabilities
of success along different series of moves through empirical observation.
Back to our information task model, finding efficient and effective ways
to retrieve, analyze, and synthesize information about the game space
and individual move configurations proved transformative.

With the advent of LLMs and other recent advances in machine
learning, we might soon stumble upon effective algorithms that combine
representations, statistics, and constraints in a way that allows complex
mathematical information to be found relatively easily, and interactively
using conversational search models. Related methods may automatically
answer questions ably and in an audience-appropriate manner, and per-
haps even produce proof strategies or complete proofs for mathematical
conjectures of real sophistication. Such advances would finally realize
some of the earliest goals of Artificial Intelligence research, and would
have a large number of potential applications.

Even if such technologies do not come to pass in the near term,
there is another important perspective for the future of MathIR. Even
with incremental advances, there is an opportunity to create systems
that help people by better aligning with their mathematical expertise
and communication styles, and that make working with mathematical
information just a bit more efficient, and just a bit more comfortable.
We find this prospect equally exciting, and a challenging goal from the
human, systems, and evaluation perspectives.
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A
Online Resources

Links for some of the resources mentioned in this monograph may be
found below in Table A.1.

Table A.1: Resources for Math Search and Question Answering

Name Type Link Year

Tools
LaTeXML LATEX-MathML Convertor https://github.com/brucemiller/LaTeXML 2004
SnuggleTeX LATEX-MathML Convertor https://github.com/davemckain/snuggletex 2008
LeanDojo Theorem provers https://github.com/lean-dojo/LeanDojo 2023
Test Collections
NTCIR Search Test Collection https://ntcir-math.nii.ac.jp/data/ 2013-16
ARQMath Search Test Collection https://www.cs.rit.edu/~dprl/ARQMath/ 2020-22
AQUA-RAT MWP Dataset https://github.com/google-deepmind/AQuA 2017
MathQA MWP Dataset https://math-qa.github.io/ 2019
ASDiv MWP Dataset https://github.com/chao-chun/nlu-asdiv-dataset. 2020
GSM8K MWP Dataset https://huggingface.co/datasets/openai/gsm8k 2021
MATH MWP Dataset https://github.com/hendrycks/math 2021
GeoQA Geometry QA https://github.com/chen-judge/GeoQA 2021
UniGeo Geometry QA https://github.com/chen-judge/UniGeo 2022
MathVista Visual Math Problem https://mathvista.github.io/ 2024
MATH-Vision Visual Math Problem https://github.com/mathllm/MATH-V 2024
Systems
MIAS Formula Search https://github.com/MIR-MU/MIaS 2011
Tangent-S Formula Search https://github.com/MattLangsenkamp/tangent-s 2017
Tangent-V Formula Search https://www.cs.rit.edu/~dprl/files/TangentV-source.zip 2019
Tangent-CFT Formula Search https://github.com/BehroozMansouri/TangentCFT 2019
NTFEM Formula Search https://github.com/NTFEM/Formulae-Embedding 2020
MathEmb Formula Search https://github.com/Franknewchen/MathEmb 2021
WikiMirs Math-Aware Search https://github.com/huxuan/WikiMirs 2016
Tangent-L Math-Aware Search https://github.com/fras2560/Tangent-L 2018
Approach0 Math-Aware Search https://github.com/approach0/search-engine 2019
MathDowsers Math-Aware Search https://github.com/kiking0501/MathDowsers-ARQMath 2021
ALBERT-for-Math-AR Math-Aware Search https://github.com/AnReu/ALBERT-for-Math-AR 2021
MABOWDOR Math-Aware Search https://github.com/approach0/pya0 2023
CrossMath Multilingual Math-Aware S. https://github.com/jgore077/CrossMath 2024
LILA QA Dataset/LLM https://lila.apps.allenai.org/ 2022
MAmmoTH Math-LLM https://github.com/TIGER-AI-Lab/MAmmoTH 2023
LLEMMA Math-LLM https://github.com/EleutherAI/math-lm 2024
ToRA Math-LLM https://github.com/microsoft/ToRA 2024
MetaMath Math-LLM https://github.com/meta-math/MetaMath 2024
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B
Search and QA for Theorem Proving

In Sections 5 and 6 we discussed math-aware search and math question-
answering. A topic closely related to these is theorem proving. Auto-
mated theorem proving aims to explore the application of computers in
proving mathematical theorems. This is actually one of the earliest top-
ics of interest in computer science. In the early 1960s, scientists started
exploring the use of machines for theorem proving for the quantification
theory (Davis and Putnam, 1960; Davis et al., 1962) using deduction
rules to prove assertions.

Informal theorem proving refers to the way that humans approach
proving theorems using reasoning through notation and natural lan-
guage, likely with some missing details (e.g., assumed definitions) and
skipped computational steps, for example. In contrast, formal theorem
proving represents theorems in a machine-readable format, making veri-
fication by logical rules possible, at the cost of more information being
explicitly stated (e.g., all variable types, definitions for all operators,
etc.).

Converting informal to formal proof steps is referred to as Auto-
formalization. The Mizar1 language is commonly used by mathemati-

1https://mizar.uwb.edu.pl/.
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cians as a formal language for writing definitions and proofs. Using
Mizar, Wang et al. (2018) explored converting (translation) of infor-
mal LATEX-written text into formal Mizar language. This work explored
different seq2seq architectures, with LSTM and attention providing the
highest BLEU score for this translation.

Researchers have also explored other formalization languages, in-
cluding applying large language models to generate statements in Codex
(Chen et al., 2021b) has been studied recently (Wu et al., 2022). This
translates statements in natural text into formalized theorems for the
interactive proof assistant Isabelle (Wenzel et al., 2008). As an example,
the system translated “Prove that there is no function f from the set of
non-negative integers into itself such that f(f(n)) = n + 1987 for every
n” perfectly to Codex as:

theorem
fixes f :: "nat \<Rightarrow> nat"
assumes "\<forall> n. f (f n) = n + 1987"
shows False

Another task for theorem proving is retrieving useful lemmas that
will help with proving steps, known as premise selection. This is a form of
search problem, where relevance is defined in terms of suitability for prov-
ing a specific conjecture. The problem is defined as (Alama et al., 2014):

Given an Automated Theorem Provers and a large number
of premises, find premises that are useful to the prover for
constructing a proof for a new conjecture.

DeepMath (Irving et al., 2016) is one of the earliest works to apply
deep learning for this task. Conjecture and axiom sequences are em-
bedded separately, concatenated, and then passed to a fully connected
neural network for predicting the usefulness of the axiom. Embeddings
are at character level for formulas, and word-level for statements defin-
ing symbols. The convolutional network model FormulaNet (Wang et al.,
2017a) used a similar idea and applied graph neural networks. Using for-
mulas in higher-order logic (Church, 1940), each formula is first parsed
into an OPT: internal nodes represent a quantifier or a constant or
variable function, and leaf nodes represent variable or constant values.
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Edges connect a quantifier to all instances of its quantified variables.
After creating the tree, a merging step is applied to merge leaf nodes
representing the same constant/variable. Finally, a unification technique
is used to replace variable names with ‘VAR’ and function names with
‘VARFUNC’. After building the graph, convolution or message passing
is applied to get node embeddings. These embeddings are used with
max-pooling to form an embedding for the graph.

As theorems are built upon existing mathematical knowledge, a
graph representation of mathematical concept statements such as lemma,
and definitions is a common approach for this task. One way of building
this graph is to use statements as nodes and ordered edges from node
s1 to s2 if there is statement 1 is a premise of statement 2 (Ferreira and
Freitas, 2020a). With this definition of a graph, the problem can be
viewed as link prediction, for which a Deep Graph Convolutional Neural
Network (DGCNN) architecture was applied (Zhang et al., 2018). The
textual content embedding of each node in this work is encoded using
Doc2Vec (Le and Mikolov, 2014) model with mathematical concepts
being encoded as linearized trees, with every sub-expression represented
as a token.

For example, the formula (x + y) × c is represented as a sequence of
tokens for subexpressions {‘x’, ‘y’, ‘(x + y)’, ‘(x + y) × c’} (similar to
what is used to generate subexpression tokens for the WikiMirs search
model discussed earlier). The authors later introduced STAtement Rep-
resentation (STAR) cross-modal representation (Ferreira and Freitas,
2021), treating mathematical formulas as natural language. Each state-
ment is viewed as a combination of words and formulas. However, for
embedding, they proposed two separate self-attention layers, one for
formulas and one for words. The output of the self-attention layers is
then concatenated and passed to a Bi-LSTM to get the final representa-
tion of the statement. To find the relatedness score between conjecture
and premises, a Siamese neural network was applied.

Generative and large language models have recently been applied
for premise selection. LeanDojo (Yang et al., 2023) is an open-source
toolkit based on the Lean2 programming language, that introduces

2https://lean-lang.org/

https://lean-lang.org/
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ReProver (Retrieval-Augmented Prover). ReProver is a language model-
based prover, augmented with retrieval for selecting premises. Given
the initial state of proof, it retrieves a set of useful premises (set at
100) using a Dense Passage Retriever. These premises are concatenated
to the initial state and passed to a fine-tuned ByT5 (Xue et al., 2022)
model to generate steps toward the proof.

As the application of LLMs for theorem proving is gaining attention,
new datasets are being introduced for theorem proving. NATURAL-
PROOFS (Welleck et al., 2021) for example, is a multi-domain corpus
of mathematical statements and their proofs, written in natural mathe-
matical language. The main tasks in this dataset are: 1) mathematical
reference retrieval: given a theorem, retrieve a set of references that
occur in the theorem proof, and 2) mathematical theorem generation:
generate the sequence of references that occur in a given theorem’s
proof. Table B.1 summarizes some of the existing resources for this task.

Table B.1: Resources for Math Search and Question Answering

Name Type Link Year

NaturalProof Proof Dataset https://github.com/wellecks/naturalproofs 2021
FormulaNet Theorem Proving https://github.com/princeton-vl/FormulaNet 2017
STAR Theorem Proving https://github.com/ai-systems/crossmodal_embedding 2021

https://github.com/wellecks/naturalproofs
https://github.com/princeton-vl/FormulaNet
https://github.com/ai-systems/crossmodal_embedding
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