Computer Science Il

(4003-232-07)

Week 7: Event-Driven Programming in Java

Richard Zanibbi

Rochester Institute of Technology

Comparison of Event and Exception Messages

in Java

Event Messages as Objects

1. Type of event (object type, e.g. ActionEvent)

2. Which object created (was the source of) the event message

3. When the event occurred

4. Data specific to the event type (e.g. the item selected from a list)

The Java event loop, handler interfaces, and handler registration
methods are used for handling event messages

Run-Time Error Messages (Exceptions) as Objects
1. Type of exception (object type, e.g. IOException)

2. Which object/method threw (was the source of) the exception
message, and at what statement

3. State of the call stack when the exception was thrown
4. Data specific to the exception type (e.g. bad array index value)

The try-catch statement and ‘throwing’ protocol are used for
handling exception messages

Inner and Anonymous Classes

Inner Class:
— Declared within the scope of a class, and has access to its data
members and methods (including for instances).

— Useful for defining objects that will be used within a class, but not
elsewhere.

Example of an Anonymous Class:
window.addWindowListener(new WindowAdapter() {
public void windowActivated(WindowEvent event) {
System.out.printin(*Window Activated”);
}
})

— A way to concisely define an altered version of an existing class or
interface (overriding methods) and create an instance at the same time.

Event-Driven Programming

Event-Driven Programming
Programs (or parts of programs) wait for messages from an event loop
representing system events that have occurred at run-time.
Handler (or Listener) algorithms are registered for specific events and then
executed when those events are received by the event loop
« Example events: pressed keys, mouse moves/clicks, connecting a USB device to
a personal computer, time stamp

Event Creator: The Operating System

Operating system detects/defines system events and passes them onto
programs (including Java programs)

Event-Driven Programming in Java:

» The JVM receives event messages from the OS, and then sends messages (l.e.
invokes methods) to objects registered for each event.

« Java provides a set of interfaces defining the message interface for components
(widgets) registered for each type of event (see page 467 of Liang). These methods
are invoked by the JVM for all objects registered for an event, when an event is
received.

Registering Handlers for Events

Java GUI Components
Have registration methods for creating a list of objects
implementing handler interfaces for each possible event

« e.g. addActionListener() for associating handlers with mouse
clicks on JButton objects (ActionEventListener objects)

When a component is notified of an event, a message is
created and then sent to every listener object in the
appropriate event “listener” list

....a bit like being on the ‘mailing list’ for each event.

Inner Class Example

(‘SimpleEventDemolnnerClass.java’)

public class pleEventD InnerClass ds JFrame {
public SimpleEventDemolnnerClass() {
JButton jbtOK = new JButton("OK");
setLayout(new FlowLayout());

add(jbtOK);

ActionListener li = new OKList 0;
jbtOK.addActionListener(listener);
}

private class OKListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
System.out.printin("It is OK");
}
}
}

For Java Swing

—Programmers use inner and anonymous classes
extensively to reduce the number of separate classes
and files needed for GUI programs.

—In particular, inner and anonymous classes get used to
define handlers for interface events (e.g. mouse,
keyboard, timer).

Important Note:

javac output for inner and anonymous classes differs from
“normal classes”

(e.g. OuterClass$innerClass.class, Outerclass$1.class)

Model-View-Controller (MVC) Example

CircleModel.java
CircleView.java
CircleController.java
MVCDemo.java

(Liang pages 1008-1014)

