
1

Computer Science II
4003-232-07 (Winter 2007-2008)

Week 3: Exceptions,
Wrapper Classes, Streams, File I/O

Richard Zanibbi
Rochester Institute of Technology

Exceptions and Exception Handling

- 3 -

Three Types of Programming Errors
Syntax Errors
– Source code (e.g. Java program) is not well-formed, i.e.
does not follow the rules of the language.
– Normally caught by a language compiler (e.g. javac)

Logic Errors
– Program does not express the operations that the
programmer intended.
– Addressed through testing (to catch logical errors) and
debugging (to fix logical errors).

Runtime Errors (“Exceptions”)
During program execution, the program requests an
operation that is impossible to carry out.

- 4 -

Examples of Runtime Errors
(Exceptions)

• Invalid input
• Attempt to open file that doesn’t exist
• Network connection broken
• Array index out of bounds

- 5 -

Catching and Handling Exceptions

Catching Exceptions
Allowing a program to receive an indication of the
state of execution when a runtime error occurs,
and the type of error detected.

Handling Exceptions
Code is associated with caught exceptions in
order to allow a program to recover from and/or
repair the problem.

- 6 -

Method Call Stack and Stack Trace
Method Call Stack (“Call Stack”)
– The stack that records data associated with the current method

being executed (top of the stack), as well that for the chain of
method calls that led to the current method

Stack Trace
– A summary of the contents of the call stack (from top to bottom)
– Normally listed from most (top) to least (bottom) recent method.

main() is usually at the bottom of the method call stack.
– Usually source line numbers for statements that invoke a method

and the last statement executed in the current method are given.
– If an exception is not caught, a Java program will display the

exception followed by a stack trace (e.g. ExceptionDemo.java,
p.578); the first (active) method will have thrown the exception

2

- 7 -

Catching and Handling Exceptions in
Java: the try-catch Block

The Basic Idea
Define 1) a scope for a set of commands that may
produce exceptions (‘try’), and 2) a subsequent list of
exception handlers to invoke when exceptions of different
types are thrown (‘catch’).

Control Flow in a ‘try-catch’ Block
– When an exception occurs in a ‘try’ block, execution
jumps to the end of the ‘try’ block (end brace ‘}’).
– Java then tries to match the exception type against the
list of ‘catch’ statements in order, to find a handler for the
exception. (Example: HandleExceptionDemo.java, p. 579)

- 8 -

Types of Exceptions in Java
System Errors (Error)
– Thrown by the Java Virtual Machine (JVM)
– Internal system errors (rare), such as incompatability

between class files, JVM failures

Runtime Exceptions (RuntimeException)
– Also normally thrown by JVM
– Usually unrecoverable programming errors (e.g. divide

by 0, array index error, null reference)

(“Normal”) Exceptions (Exception)
– Errors that may be caught and handled (e.g. file not

found)

- 9 - - 10 -

Unchecked and Checked Exceptions

Unchecked Exceptions
– Error, RuntimeException, and subclasses
– These exceptions are normally not recoverable (cannot

be handled usefully, e.g. NullPointerException)
– The javac compiler does not force these exceptions to

be declared or caught (to keep programs simpler), but
they can be.

Checked Exceptions
– Exception class and subclasses (excluding

RuntimeException)
– Compiler forces the programmer to catch and handle

these. Why?

- 11 -

Declaring and Throwing Exceptions

Exception Type

• “Throwing” an exception means to use the “throw” command to generate
a message (an object that is a subclass of Exception)

• “Declaring” an exception means to add it to a list of (checked) exceptions
at the end of a method signature, e.g.

 public void myMethod() throws Exception1,, ExceptionN { ... }

this is required if a method may throw but not catch an exception - 12 -

Catching Exceptions
Using try-catch

try {
 // statements that might throw an exception
 statement1;
 statement2;
}
catch (Exception1 e1) {
 // handler for Exception1
}
catch (Exception2 e2) {
 // handler for Exception2
}
...
catch {ExceptionN eN) {
 // handler for ExceptionN
}

// Statements after try-catch
nextStatement;

If exception occurs, jump out of
try block before next instruction

If exception occurred, search for matching
exception type (‘catch’ it), execute

associated handler. Then execute first
statement after catch blocks.

(NOTE: exceptions must be listed from
most to least specific class)

** At most one handler is executed.

If no ‘catch’ matches the exception,
the exception is passed back to the

calling method, and the current
method is exited.

3

- 13 -

Cases to consider: in method2, throwing Exception3, Exception2, Exception1,
SomeOtherException objects (each type being a subclass of ‘Exception’)

- 14 -

Getting Information from Exceptions

Example: TestException.java (p. 586)

(The message is a text string associated with the
Throwable object (e.g. exception))

- 15 -

Example: Declaring, Throwing, and
Catching Exceptions

From Text
CircleWithException.java
TestCircleWithException.java (p. 588)

*setRadius() method redefined to throw a
(built-in) IllegalArgumentException

*The message string is passed to the constructor
for IllegalArgumentException

- 16 -

Addition to try-catch:
the finally clause (try-catch-finally)
Purpose
–Define a block of code that will execute regardless of
whether an exception is caught or not for a try block
(executes after try and catch blocks)
–Finally block will execute even if a return statement
precedes it in a try block or catch block (!)

Example Uses
I/O programming: ensure that a file is always closed.
Also a way to define error-handling code common to
different error types in one place within a method.

- 17 -

FinallyDemo.java (p. 590 in text)

public class FinallyDemo {
 public static void main(String[] args) {
 java.io.PrintWriter output = null;

 try {
 // Create a file
 output = new java.io.PrintWriter("text.txt");

 // Write formatted output to the file
 output.println("Welcome to Java");
 }
 catch (java.io.IOException ex) {
 ex.printStackTrace();
 }
 finally {
 // Close the file
 if (output != null) output.close();
 }}}

- 18 -

When Do I Use Exceptions?
(text, p. 591) “The point is not to abuse exception
handling as a way to deal with a simple logic test.”

try { System.out.println(refVar.toString()); }
catch (NullPointerException ex) { System.out.println(“refVar is null”);}

vs.

if (refVar != null)
 System.out.println(refVar.toString());
else
 System.out.println(“refVar is null”);

Use exceptions for ‘unexpected’ errors (unusual situations). Simple
errors specific to a method should be handled within the method
(locally), as above.

Requires creation of a NullPointerException
object, propogating the exception

4

- 19 -

Defining New Exception Classes

Java Exception Classes
Are numerous; use these where possible.

New Exception Classes
Are derived from Exception or a subclass of exception.

Constructors for Exception Classes
Constructors are normally either no-arg, or one argument

(takes the string message as an argument)

- 20 -

public class InvalidRadiusException extends Exception {
 private double radius;

 /** Construct an exception */
 public InvalidRadiusException(double radius) {
 super("Invalid radius " + radius);
 this.radius = radius;
 }

 /** Return the radius */
 public double getRadius() {
 return radius;
 }
}

Example Use:
throw new InvalidRadiusException(-5.0);

- 21 -

Exercise: Exceptions

A. What is a runtime error?
B. What is a checked exception? What is an

unchecked exception?
C. What are the keywords ‘throw’ and ‘throws’

used for?
D. What is the purpose of supporting exceptions

within Java (in one sentence)?
E. What happens if an exception is thrown within

a method, but not caught?
F. When will an exception terminate a program?
G. In what order must “catch” blocks be

organized?
- 22 -

H.

try {
 statement1;
 statement2;
 statement3;
}
catch (Exception1 ex1) { statement4; }
catch (Exception2 ex2) { statement5; }
finally { statement6; }
statement7;

For each of the following, indicate which statements in the above
code would be executed.

1. statement2 throws an Exception1 exception
2. statement2 throws an Exception2 exception
3. statement2 throws an Exception3 exception
4. No exception is thrown.

Wrapper Classes for
Primitive Types

(text Ch 10.5)

- 24 -

Primitive Data Types

Include...
byte, short, int, long, float, double
char
boolean

Why aren’t these objects?
A. Efficiency (avoid “object overhead”)

5

- 25 -

Wrapper Classes

...but sometimes it would be useful to have objects
hold primitive data.

Example
To include different primitive data types in a single Object[] array.

Wrapper Classes
– Classes for “wrapping” primitive data in objects.
– All override the Object methods toString, equals, and hashCode.
– All wrapper classes (except for Boolean) implement the

Comparable interface (implement compareTo)

- 26 -

NOTE: all wrapper classes capitalize the name of the
associated primitive type, except for Integer and Character.

UML Class Diagram for Wrapper Classes

- 27 - - 28 -

Example: Constructing Wrapped
Numbers

Double doubleObject = new Double(5.0);
Double doubleObject = new Double(“5.0”);
Double doubleObject = Double.valueOf(“12.4”)

Integer intObject = new Integer(5);
Integer intObject = new Integer(“5”);
Integer intObject = Integer.valueOf(“12”);

NOTE: valueOf is a static method defined for all numeric
wrapper classes.

- 29 -

Converting Between Strings and
Primitive Numeric Types

Converting to String
Double doubleObject = new Double(5.0);
String s = doubleObject.toString();

Converting from String
double d = Double.parseDouble(“5.0”);
int i = Integer.parseInt(“5”);
// Using ‘parse’ method with a radix (base):
int j = Integer.parseInt(“11”, 2); // j = 3

- 30 -

Example: A Polymorphic (“Generic”)
Sorting Method

Text page 360, GenericSort.java
(an implementation of Selection Sort: iteratively

finds largest element, places at end of array)

• Using the Comparable interface
(compareTo()), different object types are
sorted using the same sorting function.

• NOTE: Java defines a static sort in the Arrays
class, for any array of objects, e.g.
java.util.Arrays.sort(intArray);

6

- 31 -

Automatic Conversion Between Primitive
and Wrapper Class Types (JDK 1.5)

Boxing
Converting primitive → wrapper
e.g. Integer[] intArray = {1, 2, 3};
e.g. Integer intObject = 2; // both legal, ‘autoboxing’ occurs

Unboxing
Converting wrapper → primitive
e.g. System.out.println(intArray[0] + intArray[1] + intArray[2]);
 // int values are summed before output.
e.g. int i = new Integer(3); // legal, ‘autounboxing occurs’

Automatic Conversions
– Compiler will box for contexts requiring an object
– Compiler will unbox for contexts requiring a primitive

- 32 -

Exercise: Wrapper Classes

A. What are the names of the wrapper
classes?

B. What is boxing and unboxing?
C. Which of the following are illegal?
1. Number x = 3;
2. Integer x = 3;
3. Double x = 3;
4. Double x = 3.0;
5. int x = new Integer(3);
6. int x = new Integer(3) + new Integer(4);
7. double y = 3.4;
8. y.intValue();

Streams and Files

- 34 -

Operating System Organization

Processor(s) Main Memory Devices

Process, Thread &
Resource Manager

Memory
Manager

 Device
Manager

 File
Manager

- 35 -

The External View of the File Manager

Hardware

Application
Program

Fi
le

 M
gr

D
ev

ic
e

M
gr

M
em

or
y

M
gr

Pr
oc

es
s M

gr

UNIX

Fi
le

 M
gr

D
ev

ic
e

M
gr

M
em

or
y

M
gr

Pr
oc

es
s M

gr

Windows

open()
read()

close()

write()

lseek()

CreateFile()
ReadFile()CloseHandle()

SetFilePointer()

WriteFile()
mount()

- 36 -

File Directories

File Directory
A set of files and other (sub)directories
Principle function: help people find their way

around data on a system

Implementation
Directories are stored as additional files

7

- 37 -

Directory Structures

D F

F

F

...

D

D D

D F F F

F FF

Flat

Strict Hierarchy
(“Directory Tree”)

D

D D

F FF FF

Acyclic Graph

D = Directory
F = File

- 38 -

Absolute and Relative Paths

Absolute Path
Path from the root (top) directory in a directory tree to

the desired directory/file
• e.g. “/home/zanibbi/comp232/slides.ppt”
• e.g. “D:\myfiles\zanibbi\comp232\slides.ppt”

Relative Path
Path from (“relative to”) a given directory

• (usually current)
• e.g. : “comp232/slides.ppt” (from /home/zanibbi)
• e.g. : “comp232\slides.ppt” (from D:\myfiles\zanibbi)

- 39 -

D:\

USER

GJN PROGRAMS

PRIME.CBIN AUTOEXEC.BAT

PATCH

Example: DOS File Directory

(Disk Drive D)

“This Machine”

A:\ B:\ C:\

...

(usually implicit root directory of file system)

- 40 -

Example: Unix File Directory

Directed Acyclic Graphs
Root Directory: “/” (e.g. “cd /”)

/

home etc lib bin

zanibbi wasserman

comp232

slides.ppt

- 41 -

File Class in Java
Purpose
– Represent attributes of files (from file descriptors in directories)
– May be used to rename or delete files
– Directories may also be represented using a File object
– ** Not used to read and write file data

Path Separators (“\\” and “/”)
– Because “\” is an escape character in Java Strings, directory

separators for Windows must be indicated using “\\”
– e.g. “C:\\book\\Welcome.java”
– When giving relative paths in Java, you can use “/”, as on Unix

systems (works for all platforms). This is recommended.

Example
TestFileClass.java (p. 285)

- 42 -

Writing to Text Files in Java
Using PrintWriter

PrintWriter
Allows programmer to use the same print, println, and printf

commands used with System.out, but sends data to a file rather
than the standard output.

Opening a File for Writing
PrintWriter outputFile = new
PrintWriter(“FileInCurrentDir.txt”);

Important
– It is important to explicitly close() a file, to make sure that the data

written is properly saved, and to release resources needed for the
file.

– e.g. outputFile.close();

Example
WriteData.java (p. 286)

8

- 43 -

Reading Text Files in Java
Using Scanner

Scanner
Reads input from a text file one token at a time. A token is a series of

adjacent non-whitespace characters (newlines, spaces, tabs
separate tokens)

Opening a File for Reading
Scanner stdIn = new Scanner(Standard.in);
- Standard.in is the standard input, a file defined for all programs

running on a machine. Usually the standard input contains captured
keyboard strokes.

Scanner input = new Scanner(new File(“FileName.txt”));

Example
ReadData.java (p. 287)

