
1

Computer Science II
4003-232-07 (Winter 20072)

Week 2: Inheritance, Polymorphism, and
Interfaces

Richard Zanibbi
Rochester Institute of Technology

Polymorphism and Casting

(text 9.7 – 9.8)

- 3 -

Dynamic Binding
(or Polymorphism of Methods)

Definition
– Selecting the definition of a method to invoke at runtime (i.e. which

definition to bind to the method call)
– Must match method name, number, order and types of arguments
– Important when methods can be overridden (e.g. toString())

Dynamic Binding In Java
The search for which definition to bind to a method call starts from the

actual (constructed) class of an object, or a named class, and
proceeds up the inheritance hierarchy towards Object.

Example
PolymorphismDemo.java (Liang pp. 311-312)

Student Person ObjectGraduateStudent

- 4 -

Dynamic Binding and Arguments
Method Arguments in Java
– May be of any type that is considered a subtype (e.g. subclass) of

the parameter type.
– e.g. public static void m(Object x) from the previous example will

accept any object belonging to a subclass of Object as an
argument (i.e. from any class!)

– e.g. public static void p(double x) may accept any of the numeric
types for x (byte, short, int, long, float, double) and implicitly
perform a widening type conversion (cast) if necessary: see p.40 in
course text.

– For overloaded methods, start with actual operands’ type and use
the method definition with the most specific (‘lowest’) accepting
formal parameter

– Example: OverloadedNumbers.java

Generic Programming
– Takes advantage of dynamic binding, ability to handle many types

in the same way (generically) and invoke overridden methods

- 5 -

The ‘instanceof’ operator

Use
A boolean operator that tests whether an object

belongs to a given class.

Examples
Circle myCircle = new Circle(1.0);
– myCircle instanceof Circle // true
– myCircle instanceof Object // true
– myCircle instanceof String // false

- 6 -

Type Casting Objects
Upcasting
– Converting the type of an object to a superclass (“up” the

inheritance/type hierarchy). Usually not explicit, as properties of
superclasses are inherited by subclasses automatically.

– e.g. Object o = new Student(); // Student referenced as an Object
– Similarly, parameters of type Object may accept objects of any

other type, with an implicit cast to class Object.

Downcasting
– Converting the type of an object to a subclass (“down” the

inheritance hierarchy). Requires explicit casting, with a check to
ensure that the cast will be successful using instanceof.

– e.g. if (o instanceof Student) Student s = (Student) o;
– e.g. TestPolymorphismCasting.java (Liang p. 315)

Why do we need to check types before downcasting?

2

- 7 -

Precedence of Cast vs. Dot operator

Caution!
The access (dot) operator has higher precedence

than type casting.

Fix:
Put results casting operations in brackets when

paired with access operators, e.g.
((Circle)object).getArea() vs.
(Circle)object.getArea()

- 8 -

Subtle Point: Matching the Method vs.
Selecting the Method Definition

Matching the Method Signature (static)
– For objects, the selection of which method signature to use is

determined at compile time based on the type of a reference.
– Put another way, the type of a reference to an object determines

which class interface is active for an object
– If the active class interface is a superclass of the class that defines

a desired method, it will not be found.
• e.g. Object o = new Circle(1); o.getRadius() // won’t work.
• Object o = new Circle(1); ((Circle)o).getRadius() // will work.

Selecting the Method Definition (dynamic)
Is done dynamically at runtime (dynamic binding). The actual

(constructed) class determines the implementation used.

- 9 -

Methods in the Object Class

boolean equals(Object o)
Test if another object is the same as the current one (test

by reference value)

int hashCode()
Used to define integer hash codes for hash sets (a type of

data structure). In Object, this is the object’s address.

Object clone()
Copies the state of an object to produce a copy.
e.g. int[] targetArray = (int []) sourceArray.clone();

- 10 -

void finalize()
– Invoked by the garbage collector before an object is

destroyed.
– Objects without a reference are “garbage.”
– By default, does nothing.
– You should never invoke finalize() in a program!
– Example: FinalizationDemo.java (p. 323)

Class getClass()
– The JVM creates objects to represent classes (“meta-

objects”), including the class name, constructors, and
methods. There is a class “Class” used to define these.

– It is possible to query a Class object to get information
about a class at runtime.

– Every object may be asked to return the Class object
(meta-object) with which it is associated using getClass()

- 11 -

getClass() example

Object obj = new Object();
Class metaObject = obj.getClass();
System.out.println(“Class is: “
 + metaObject.getName());

produces

Class is: java.lang.Object

- 12 -

Hiding Data and Methods

• Static Methods
• Static/Instance Data Members

cannot be overridden; only hidden. (Avoid this!)

Accessing Hidden Methods and Data
– Using super() in the subclass
– Using a reference variable of the superclass type (i.e. use the

superclass type (interface))
– Unlike instance methods, static methods and data members are

bound at compile time (“statically”)
– Example: HidingDemo.java (p. 326)
– ** Static methods and fields can always be accessed directly using

the class name (if it is visible, using Class.staticMethod())

3

- 13 -

Exercise: Polymorphism

A. What is wrong with the following code?

public class Test {
 public static void main(String[] args) {
 Object fruit = new Fruit();
 Object apple = (Apple) fruit;
 }
}

class Apple extends Fruit { }
class Fruit { }

- 14 -

B. Indicate whether each of the following statements are valid or
invalid.

1. Object o1 = new String(“test”);
2. if (o1 instanceof String) { };
3. if (o1 instanceof Circle) { };
4. Object o2 = new Circle(1); // passed radius
5. String s1 = o1;
6. String s2 = (String) o1;
7. Object o3 = (Object) s2;
8. String s4 = ((Object)o1).toString();
9. String s5 = (Circle)o2.toString();
10. Object o4 = (Object) o1;

C. Why should instanceof be used before performing
a downcast of an Object?

Abstract Classes and Interfaces

- 16 -

Abstract Method

Definition
A method which has a signature, but no body. All abstract

methods are instance methods (non-static).
• e.g. public abstract int deviseNumber();

Purpose
– Class design: permits defining a method signature

whose definition may be provided in subclasses.
– Through dynamic binding and overriding, this will

allow different versions of the method to be invoked at
run time for objects that belong to the abstract class,
but different actual subclasses (example later).

- 17 -

Abstract Class
Definition
– A class which may not have any instances created from it, used

solely to define subclasses of itself. Otherwise, it is a normal class,
and is included in the class inheritance hierarchy.

– All classes that contain abstract methods *must* be declared
abstract.

– e.g. public abstract class GeometricObject() { }

Class Design
– In general, superclasses should be designed to contain common

features of subclasses (to maximize code reuse, e.g. Object class)
– Abstract classes are useful for defining and using common data and

behaviours for subclasses that may represent significantly different
object types.

– Defines an interface for these (possibly very) different subclasses

- 18 -

Concrete Class
A class which may be used to create instances .
Abstract classes are not concrete classes.

Additional Notes on Abstract Classes
– May still have constructors defined (though protected

access more appropriate than public)
– May be used as a data type for reference vars.

• e.g. GeometricObject g = new Circle(1.0);
• This is one of their key uses; as an interface to access common

data and methods of different subclasses.

Subclasses of Abstract Classes
– Must implement all abstract methods, or also be

declared abstract (no instances).

4

- 19 - - 20 -

(abstract class)

(abstract methods)

- 21 -

Examples

TestGeometricObject.java (p. 345)

Uses of Abstract Class:
– Abstract class allows us to get areas and perimeters

using a single interface, though the computation of
these in the Circle and Rectangle classes are
completely different.

Another Example (Text 10.3)
Calendar class (abstract) and Gregorian Calendar

(concrete subclass of Calendar)

- 22 -

A Yet More Restricted Class Type:
Interfaces in Java

Definition
– A type of class which defines only (public static final)

constants and (public) abstract instance methods.
– Provides a data type for reference variables from which

the interface may be used to act on objects associated
with the interface type.

– NOTE: Interfaces are not part of the class hierarchy

Java Syntax
Defined using the “interface” rather than “class” keyword

• e.g. public interface Cloneable { ... }

- 23 -

Motivation for Interfaces in Java

Multiple Inheritance is Prohibited
We cannot inherit from multiple classes; in particular,

state is only inherited through a strict linear path in the
inheritance tree (hierarchy)

But...
– Still wish to allow very different data types (classes) to

have common methods to support generic programming
(e.g. the ability to compare objects using a single
interface (Comparable))

– A class may ‘implement’ one or more interfaces to
support these ‘generic’ types of computation.

- 24 -

Example: Comparable Interface
Purpose
– Allow definition of a method for determining which of a

pair of objects of the same class is ‘larger’ or if they are
the ‘same size.’

– Can then use compareTo() to compare Strings,
Students (e.g. by student id), Geometric objects (e.g. by
area), etc. using a single method with different
definitions (one per class)

package java.lang

public interface Comparable {
 public abstract int compareTo(Object o);
}

Returns:

-1: this < argument

0: this, argument same

1: this > argument

5

- 25 -

Example Classes
Using Comparable Interface

public class String extends Object implements Comparable {
... }

public class Date extends Object implements Comparable {
... }

Interface as a Reference Variable Type
The following are valid for String object s and Date object d:

• s instanceof String,
• s instanceof Object,
• s instanceof Comparable
• d instanceof java.util.Date,
• d instanceof Object,
• d instanceof Comparable

- 26 -

Example of a ‘Generic’ Comparison
Function

public class Max {
 public static Comparable max(Comparable o1, Comparable o2) {
 if (o1.compareTo(o2) > 0)
 return o1;
 else
 return o2
 }
}

Example Usage:
String s1 = “a”; String s2 = “b”;
String s3 = (String)Max.max(s1,s2);

Date d1 = new Date(); Date d2 = new Date();
Date d3= (Date)Max.max(d1,d2);

Any class that implements Comparable can be used with Max.max()
(e.g. a revised Rectangle class (see p. 350))

- 27 -

Interfaces and Inheritance

Classes Implementing Interfaces
– Concrete and Abstract classes may inherit from only

one parent.
– However, they may implement multiple interfaces.

public class A extends B implements InterfaceA,
InterfaceB, ..., InterfaceN { }

Interfaces extending Interfaces
Interfaces may inherit from and extend one or more

interfaces.
public Interface NewInterface extends IntA,, IntN { };

- 28 -

UML Representation of
Inheritance/Implementation

Objects of Class2 are instances of all the other classes and interfaces
shown. This means variables referring to a Class2 object may be
any of these types.

- 29 -

Marker Interfaces
Marker Interface
– An interface that contains no constants or methods; ‘flags’ a class as having certain

properties (e.g. to tell Java to permit certain operations)
– e.g. “Cloneable” (designates that objects of a class may have their state copied into

another object)

public class House implements Cloneable, Comparable { ... }

House h1 = new House(1,1750.50); // id, area
House h2 = (House)house1.clone();

.. See text Section 10.4.4 for details.

**Shallow vs. Deep Copies
– Shallow: object references copied by value (copies reference to a single object) -

danger of manipulating the “original” data in this case
– Deep: object data is copied into new objects, and “copied” references point to the

new objects and not the original ones (e.g. using clone())

