
1

Computer Science II
4003-232-08 (20072)

Week 1: Review and Inheritance

Richard Zanibbi
Rochester Institute of Technology

Review of CS-I

- 3 -

Hardware and Software

Hardware
–Physical devices in a computer system (e.g.

CPU, busses, printers, etc.)
–The machine and attached devices

Software
–Computer programs (machine instructions)
–“Soft” because they can be easily replaced or

altered

- 4 -

Syntax and Semantics
of Formal (e.g. Programming) Languages

Syntax
The rules governing how statements of a formal
language (e.g. Java) may be created and combined

e.g. Rules for valid Rochester area phone numbers

Semantics
Given a language (code), the meaning of statements in
the code (what statements represent, their information)

e.g. What information does the following represent:
“349-5313”

- 5 -

(Liang, p. 372):
A “Waterfall” Model of Software Development

Requirements
Specification

System Analysis
(Data Flow)

System Design
(Components)

Implementation

Testing

Deployment

Maintenance

CS2 focus

- 6 -

Object Oriented Programming

Paradigm:
Represent programs as a set of objects that encapsulate data and
methods (state and behaviour) and pass messages between one
another.

Key Object Oriented Concepts:
Class (template for a set of objects)
–Class (‘static’) variables that belong to a class
–Class (‘static’) methods that belong to a class

Instances (objects), each with state and behavior
–Instance variables that belong to individual objects
–Instance methods that are associated with individual objects

2

- 7 -

Miscellaneous Java...
• Declaring, Initializing, and Assigning Variables
• Floating point vs. Integer Arithmetic
• Type conversions (widening and narrowing), and casting
• Operator Precedence and Associativity (see Liang, p.

86-88 and Appendix C)
• Constants

• Class definition syntax
• Method definition syntax: constructors, void methods

(procedures), non-void methods (functions)
• The new operator (instantiates objects from classes)
• Visibility modifiers (public and private)
• Arguments (pass-by-value), and local variables

State (Data/Variables)

- 9 -

Variable Properties

1. Location (in memory)
2. Name

• A symbol representing the location
3. Type (of encoding used for stored data)

• Primitive (e.g. int, boolean), or
• Reference (address in memory of a class instance

(object))
4. Value

• The primitive value or reference (for objects) stored
at the variable location

- 10 -

Memory Diagrams:
Illustrating Variable Properties

Variable Storage (Memory Locations)
Represented using a box

Variable Names and Types
Indicated using labels outside the box (e.g. x : int)
For static variables, indicate ‘static’ and class name

• e.g. x : int (static Widget)

Variable Values
– Primitive types: show value in the box (e.g. for integers, show decimal

value)
– Reference variables: draw arrow from box to object data

Objects
Drawn as circles, with internal boxes to represent data members
Strings are a ‘special case’ (see next slide)

- 11 -

1050

i : int

false

j : boolean

myString : String

“Hello World”

Program:

int i = 1050;
boolean j = false;
String myString = new String(“Hello World”);

- 12 -

1982

year : int

2

22

day : int

month : int

name : String

birthDate : BirthDate

true

active : boolean

“John Smith”

current : Student

18952

numberStudents : int
(static Student)

3

- 13 -

Testing Reference Variable Values (==)
vs. Object States (.equals())

Equivalent References (==)
Tests whether the memory location referred to by reference
variables is identical

(A == B): Does String variable A refer to the same memory location as
String variable B?

Equivalent Object States (.equals())
A method defined for the Object class, and overwritten by other Java
classes (e.g. String) that normally tests for identical object states

(A.equals(B)): Does String variable A have the same state (characters)
as String variable B?

WARNING: for Object, equals() and == are the same

- 14 -

Variable Scope and Local Variables
Definition

The program statements from which a variable may be referenced
Local variable

– A variable declared (and thus defined) within a given block (e.g. a
loop index variable i within the outer block of a method)

– Local variables may be referenced only within the block in which
they are declared (locally, by statements in the block)

– Formal method parameters are local variables that may be
referenced within the body of a method
• Actual parameters (arguments) provide initial value for formal

parameters (Java has a pass-by-value semantics for parameters)

Masking or Shadowing
– Local variable has same name as variable in the outer scope;

references in the local scope are to the locally declared variable
– Local variables may also mask instance or static variables in a

method

- 15 -

Space for main()
k:
result: 1
j: 2
i: 5

Space for max()
result:
num2: 2
num1: 5
Space for main()
k:
result: 1
j: 2
i: 5

Space for main()
k: 5
result: 1
j: 2
i: 5

main() invoked max() invoked max() returns main() returns

public class TestMax {
 public static void main(String[] args) {
 int i = 5, j = 2;
 int result = 1;
 int k = max(i, j);
 System.out.println(“Max is " + k + “ , result = “ +
result);
 }
 public static int max(int num1, int num2) { int result; ...

; return result;}
}

- 16 -

Arrays (which are objects in Java)
Use for Arrays

– Allow us to organize variables in a structure, rather than have a large set
of unique names for every variable

Multi-dimensional Arrays:
We might represent 150 marks as:
– A one-dimensional array of 150 (double) floating point numbers

• double[] marks = new double[150]; marks[0] = 95.1;
– A 2-D array of 15 (students) x 10 ((double) marks per student)

• double[][] marks = new double[15][10]; marks[0][0]= 95.1;
– A 3-D array of 15 (students) x 5 (quizzes) x 2 ((double) mark for each

section of each quiz, e.g. programming and short answer)
• double[][][] marks = new double[15][5][2];
marks[0][0][0] = 95.1; marks[0][0][1]=85.0;

Ragged Array (see pages 194-195)
– Array of 15 (students) x *different* sized arrays for each student, to

represent the case where some students miss quizzes
• double[][] marks = new double[15][];
 marks[0] = new double[2]; marks[1] = new double[3];
• Possible because java implements 2D and higher dimensional arrays

as *arrays of arrays*

- 17 -

1D Array: Example Memory Diagram

4

3

2

1

0

intArray[4]

intArray[3]

intArray[2]

intArray[1]

intArray[0]

int intArray[] = new int[5];
for (int i=0; i < intArray.length; i++)
 intArray[i] = i;

vs.

int intArray[] = { 0, 1, 2, 3, 4 };

intArray : int[]

- 18 -

1D Array: Another Example

null

null

null

null

null

strArray[4]

strArray[3]

strArray[2]

strArray[1]

strArray[0]
strArray : String[]

String[] strArray = new String[5];

4

- 19 -

strArray[4]

strArray[3]

strArray[2]

strArray[1]

strArray[0]
strArray : String[]

String[] strArray = new String[5];
for (int i=0; i < strArray.length; i++)
 strArray[i] = new Integer(i).toString();

“0”

“1”

“2”

“3”

“4”
- 20 -

Numeric Type Casting

Type Casting
Changes the type (representation or encoding) of a
variable or constant

Narrowing Conversion
Convert from a larger range of values to a smaller range
of values

• e.g. int x = (int) 5.32;

Widening Conversion
Convert from a smaller to a larger range of values

• e.g. double x = (double) 5;

- 21 -

Exercise: Variables
A. What are the four variable properties we

discussed? Name and define each in point form.

B. Draw memory diagrams for the following.
1. int x = 5; double y = 2.0; y = x;
2. String s1 = “first”; String s2 = “second”; s1 = s2;
3. String strArray[] = { “a”, “b”, “c”, “d” };
4. boolean f[][] = new boolean[3][2];
5. int y[][] = { { 1, 2, 3 }, { 4, 5, 6, 7} };

C. Are the following legal? Why?
1. double y = (double) 5;
2. int x = 5.0;
3. int x = (int) 5.0;

- 22 -

Exercise: Variables (Cont’d)
What is output by the following program? How do
 the definitions for x and y differ? What kind
 of parameter and variable is args?

class SimpleExample {
 static int x = 5;
 int y = 2;

 public static void main(String args[]) {
 int x = 4;

 y = 9;
 System.out.println(x + y);
 }
}

Methods

- 24 -

Control Flow
Definition

– The order in which statements in a program are executed
– “Simple” control flow: sequential execution of statements

• “do a, then b, then c”

Conditional Statements (if, switch)
Change control flow by defining different branches of execution followed

depending on Boolean conditions (expressions)
• “if C is true then do a, else do b”
• “if C is true then do {a, then b, then c}, else do {d, then e, then f}”

Iteration Statements (while, do...while, for)
Change control flow by repeating a statement or block (compound

statement) while a Boolean condition holds
• “while C is true, do {a, then b, then c }”

Method Invocation
Produces a “jump” to the instructions in a method invocation
(also changes context (e.g. defined local variables): see earlier “TestMax”

example on slide 15))

5

- 25 -

Method Visibility
(similar to Variable Scope)

Definition
The program statements from which a method may be invoked (‘accessed’).
Access modifiers (public, private, etc.) determine which methods may invoke a method
(e.g. private methods: may only be invoked by other methods in the same class definition)

Instance Method
Defined for class instances (objects) – invoked from an instance (‘.’)

e.g. MyObject.toString();
Method definition may reference all instance and static variables of the associated class

Static (Class) Method
Single definition shared by all instances – normally invoked using class name (‘.’)

e.g. Student.getNumberOfStudents();
Method definition may reference only static variables of the associated class

Polymorphism (of Methods)
– Occurs when a method redefines (‘overrides’) a method of the same name in the parent

class (e.g. toString() is often overridden)
– Note similarity of overriding to variable masking

- 26 -

Method Overloading

Definition
Methods with different parameter lists but the same

name

– public static int max(int num1, int num2)
– public static double max(double num1,

double num2)

NOTE:
 overloaded methods must have different parameter

types; you cannot overload methods based on
modifiers or return types

- 27 -

What is ‘this’ ?

Definition
– In java, this is used within an instance method to refer to the

object invoking the method
– Roughly: a reference to ‘me’ for an object
– All instance variable references and method invocations

implicitly refer to ‘this’
• (x = 2 same as this.x = 2; toString() same as this.toString())

Some Uses
1. Prevent masking of variables (e.g. in a constructor)
2. Invoke other constructors within a class

– Note: if used in this way, this(arg-list) must be the first statement in
the constructor definition

3. Have object pass itself as a method argument
e.g. SomeObject.printFancy(this);

- 28 -

Exercise: Methods
A. What is produced as output by the following?
int a = 2;
switch (a) {
 case 2: System.out.println(“Case 2”);
 case 1: System.out.println(“Case 1”); break;
 default: System.out.println(“Default Case”); }

B. Answer the following in 1-2 sentences each.
1. In what way are an if statement and a while statement the same?
2. How do an if statement and a while statement differ?
3. What extra elements are added to the conditional test in a while

loop to produce a for loop?

- 29 -

Exercise: Methods, cont’d

C. What is wrong with the following?
class MethodExample {
 private int x = 5;
 static private int y = 3;

 public int methodOne() {return methodTwo();}
 public int methodOne(int x) {this.x = x; return x;}
 static public int methodTwo() {return y + methodOne(2); }
 static public int methodTwo(int x) { this.x = x; return x;}
}

Java Classes

6

- 31 -

Main Elements of a Java Class
1. Class signature

• Name, access modifiers
2. Class (‘static’) properties

• Data members (variables, constants)
• Methods: accessors, mutators, other methods

• cannot reference (use) instance variables

3. Constructors
• Used by the ‘new’ operator to initialize constructed

instances
• Constructors may invoke other constructors using

‘this’ (must be first statement if this is the case)

- 32 -

Main Elements of a Java Class, Cont’d

4. Instance properties
• Data members (variables, constants)
• Methods: accessors, mutators, other methods

• can reference (use) static and instance variables
• ‘this’: refers to specific instance executing a method at run-

time; all direct references to instance variables and
methods implicitly refer to ‘this’

5. Class Contract
• Access modifiers (public, private, etc.) specify

where the class, and class/instance data members
and methods may be used outside of the class
definition

- 33 -

Class
Implementation

Class Contract
(signatures of public
methods and public

constants)

Client using class
(through class

contract)

Class Contract
• Collection of methods and
data members accessible
outside of a class

• Includes description of data
members and how methods
are expected to behave

Method Signature
Name, return type, and
parameter types for a method
e.g. boolean isDaytime(int seconds)

New Material:
Inheritance
(Ch. 9 of Liang)

- 35 -

In OOP, What is Inheritance?
Definition
– A new class taking the definition of an existing class as the starting
point for it’s own definition.
– Represents an ‘is-a’ relationship between the derived class and the
existing class.

Superclass
The existing (“parent”) class providing the initial definition for the new
“derived” or “child” class

Subclass
A class derived from an existing class (“child class”)

In Java
Only accessible (e.g. non-private) data members and methods are
`inherited’ by a subclass. Constructors are also not inherited.

Inheritance is a formalized type of ‘code-reuse’
- 36 -

Inheritance: A Simple Example
Superclass: OnlineStore
– Private Data: versionNumber, ...
– Public Data: cash, inventoryValue, ...
– Private Methods: computeInterest(), ...
– Public Methods: getCash(), sale(String item, int quantity), ...

Subclass 1: OnlineBookStore extends OnlineStore
– Inherited Data: cash, inventoryValue
– New Public Data: bookTitles, bookDistributors....
– Inherited Methods: getCash(), sale(String item, int quantity), ...
– New Public Methods: findISBN(String title), ...

Subclass 2: OnlineMusicStore extends OnlineStore
– Inherited Data: cash, inventoryValue
– New Public Data: albumTitles, musicDistributors, ...
– Inherited Methods: getCash(), sale(String item, int quantity), ...
– New Public Methods: getArtist(String albumTitle), ...

Subclass 3: OnlineScifiBookStore extends OnlineBookStore
– Inherited Data: cash, inventoryValue, bookTitles, bookDistributors...
– New Public Data: scifiOrganizations, scifiConferenceDates, ...
– Inherited Methods: getCash(), sale(String item, int quantity), findISBN(String title), ...
– New Public Methods: conferencesOn(Date day), ...

7

- 37 -

Inheritance in Java
Syntax
Use “extends” keyword

• (e.g. class NewClass extends AnotherClass { ... })

‘Object’ as the “Parent of them all”
All classes in Java extend (inherit from) the object class.

public class NewClass {} = public class NewClass extends Object {}

Multiple Inheritance
A class inheriting from more than one parent class

• Not permitted in Java
• Is permitted in other languages such as C/C++

- 38 -

- 39 -

Note

The implementations of the three
classes defined in the previous slide are
included in the source code provided
with the course text (see link on course
section web page).

http://www.cs.rit.edu/~rlaz/cs2

- 40 -

The Java ‘super’ keyword
Purpose
Provides a reference to the superclass of the class in

which it appears
Uses
1. Invoke a superclass constructor

– Constructors are not inherited in Java; this is the only way to
invoke a superclass constructor

– Similar to using ‘this,’ the call to ‘super()’ or ‘super(arg1, arg2,
...)’ must be the first statement in a constructor if present.

2. Invoke a superclass method that has been overridden
– e.g. we can use super.toString() to invoke the toString()

method of the superclass rather than that in the current class
– Similar to ‘this,’ it is possible but not necessary to use super to

invoke all inherited methods from the superclass (implicit)
– Warning: we cannot ‘chain’ super, as in super.super.p()

- 41 -

The Inheritance Hierarchy and
Constructor Chaining

Calling a constructor
Normally invokes default constructors for each class from

root of the inheritance hierarchy, starting with Object
• This is necessary to ensure that all inherited data is properly

initialized according to the class definitions.

e.g. public A() { } = public A() { super(); }

Example
Faculty class (see code, pg. 307 of Liang)

- 42 -

A Warning About Constructor Chaining
in Java...

Default Constructor (“no-arg constructor”)
Is automatically defined if no constructor is given by the

programmer, otherwise it must be explicitly defined to exist

This Means...
That an error occurs if we go to construct an object and one

of its ancestor classes in the inheritence hierarchy does
not have a default constructor defined.

Fix:
If a class may be extended, explicitly define a default

constructor to avoid this situation.
More naïve approach: always define a default constructor.

8

- 43 -

Overriding Methods (again)

public String toString()
Defined in Object, normally overridden to give text

summary of object state
• default output is “ClassName@HexAddress”
Loan loan = new Loan();
System.out.println(loan.toString())
====>(output) Loan@15037e5

Overriding
Achieved by redefining an inherited method in a child class.

Method signature must be the same.
e.g. in Circle, redefine toString() method inherited from Object:
public String toString() {
return “A Circle with color: “ + color +

“and is filled: “ + filled;}
- 44 -

Example:
Overriding (left) vs. Overloading (right)

What is the output of each program?

- 45 -

Inheritance and the Class Hierarchy
(What does if mean if Class A ‘is-a’ inherits from

Class B?)
Effect on Types
Objects from a class possess:

• The type (incl. data + methods) of the class itself
• The type (incl. data + methods) of the superclass
• The type (incl. data + methods) of the superclass’ superclass
• ... and so on, up to the Object class in the class inheritance

hierarchy.

Reference Variables
May invoke accessible methods of an object for the

reference variable type, and any types that precede that
type in the class inheritance hierarchy

String x = “Hi there.”; // String and Object methods usable on x
Object a = x; // Only Object methods may be invoked on a.

- 46 -

The protected access modifier
Decreasing Visibility:

1. public

2. protected

3. (default) (no modifier)

4. private

- 47 -

Exercise
A. What is the printout of running class C?

class A {
 public A() {
 System.out.println(“Constructor A()”);
 }
}

class B extends A { }

public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

- 48 -

B. What is wrong with the following?

class A {
 public A(int x) { }
}

class B extends A {
 public B() { }
}

public class C {
 public static void main(String[] args) {
 B b = new B();
 }
}

9

- 49 -

C. True or False:
1. A subclass is a subset of a superclass
2. When invoking a constructor from a subclass, it’s

superclass’s no-arg constructor is always invoked.
3. You can override a private method defined in a

superclass

D. What is the difference between method
overloading and method overriding?

E. Does every class have a toString() method?
Why or why not?

- 50 -

F. What is wrong with this class? Also, draw a
UML class diagram for class B (Circle may be
represented using just a labeled box).

class B extends Circle {
 private double length;

 B(double radius, double length) {
 Circle(radius);
 length = length;
 }
}

