
1

11/5/2003 Networking 1

What is a Network?

• Computer network
– a set of computers using common protocols to

communicate over connecting transmission
media.

• Protocol
– a formal description of message formats and the

rules two or more machines follow to
exchange messages.

11/5/2003 Networking 2

Protocols

Hi

Hi
Got the
time?
2:00

TCP connection
req.

TCP connection
reply.
Get http://gaia.cs.umass.edu/index.htm

<file>
time

2

11/5/2003 Networking 3

Classifying Networks

• Networks can be classified by size
– Local Area Networks (small)

• privately-owned
• cover a small area
• high data rates

– Wide Area Networks (large)
• owned/operated by a network provider
• large capacity
• often have an irregular topology

11/5/2003 Networking 4

Internetworks

• An internetwork, or internet, is formed
when two networks are connected together.

• Two networks are joined using a computer
that is directly connected to both networks

• A computer that joins two networks is
called a gateway

3

11/5/2003 Networking 5

An internet

A Network
A Network

Service Provider’s
Network

11/5/2003 Networking 6

What Is The Internet?

• The Internet
– “Internet (noun) - A sprawling collection of computer networks that spans the globe,

connecting government, military, educational and commercial inst itutions, as well as private
citizens to a wide range of computer services, resources, and in formation. A set of network
conventions and common tools are employed to give the appearance of a single large network,
even though the computers that are linked together use many diff erent hardware and software
platforms."

• An Intranet
– "Intranet (noun) - A contained collection of computers and networks within an organization (it

may span the globe), connecting the organization's members and/o r employees to a range of
computer services, resources, and information. A set of network conventions and common tools
are employed to give the appearance of a single large network, e ven though the computers that
are linked together use many different hardware and software pla tforms. It's more than a fancy
name for the corporate LAN/WAN"

4

11/5/2003 Networking 7

The Internet in the USA

11/5/2003 Networking 8

Nuts and Bolts

local ISP

company
network

regional ISP

router workstation
server mobile

5

11/5/2003 Networking 9

How Did It Get Started?

• The Internet started as the ARPAnet
– Started in the mid 60s, working in early 70s
– Designed for the military
– Could only be used by the military

• Applications of the ARPAnet included
– Electronic Mail
– Remote Access
– File Transfer

11/5/2003 Networking 10

Consequences

• The ARPAnet provided services to its users
and served as a test bed for network
research.

• To connect to the ARPAnet an organization
had to have a contract with the DoD.

• As a result many small, special interest,
networks were created.

6

11/5/2003 Networking 11

NSFnet

• In the late 80s NSF supported the creation
of 5 supercomputer centers.

• NSF Decided to use ARPAnet technology
to provide remote access, but could not use
the ARPAnet to do this.

• In 1985 NSF announced its decision to
build the NSFnet.

11/5/2003 Networking 12

7

11/5/2003 Networking 13

Commercialization

• During NSF's support of the Internet
commercial use was forbidden by law.

• On April 30th, 1995 NSF pulled the plug on
the NSFnet and turned it over to the private
sector.

• Since that time commercial use of the
Internet has grown dramatically.

11/5/2003 Networking 14

Types of Transfer

• Networks typically provide two types of
transfer
– Connection-oriented

• often reliable
• stream based

– Connectionless
• often unreliable
• datagram based

8

11/5/2003 Networking 15

Connection-oriented Transfer

Create Socket

Accept

Read/Write

Create Socket

Connect

Read/Write

Server

Client

Connection Establishment

Communication

11/5/2003 Networking 16

Connectionless Transfer

Create Socket

Read/Write

Create Socket

Read/Write

Server

Client

Communication

9

11/5/2003 Networking 17

The TCP/IP Protocol Suite

• TCP/IP is a set of protocols that were
created specifically to allow development of
network and internetwork communications
on a global scale

• TCP/IP is the most commonly used protocol
within the internet.

• TCP/IP is normally considered to be a four-
layer system.

11/5/2003 Networking 18

The TCP/IP Protocol Suite

Application

Transport

Network

Link

Telnet, FTP, e-mail, etc.

TCP, UDP

IP

device driver and interface card

10

11/5/2003 Networking 19

RFCs

• All official standards in the internet
community are published as a Request for
Comments, or RFC.

• All RFCs are available at no charge through
electronic mail, FTP, or the Web.

• A nice place to get RFCs is at
– http://www.rfc-editor.org/

11/5/2003 Networking 20

IP: Internet Protocol

• IP is the workhorse protocol of the TCP/IP
protocol suite

• IP provides an unreliable, connectionless,
datagram delivery service

• RFC791 is the official specification of IP

11

11/5/2003 Networking 21

Addressing

• A distinction is made between names,
addresses, and routes
– A name indicates what we seek
– An address indicates where it is
– A route indicates how to get there

• IP deals primarily with addresses. It is the
task of higher level protocols to make the
mapping from names to addresses.

11/5/2003 Networking 22

IP Addresses

• Every host on the internet must have a
unique Internet Address (an IP address)

• IP addresses are 32-bit numbers and are
divided into two components: the host
address and the network address
– The number of bits assigned to the host and

network varies depending on the class of the
address

12

11/5/2003 Networking 23

Dotted Decimal Notation

• IP addresses are normally written as four
numbers, one for each byte of the address.
– 129.21.38.169

• The easiest way to differentiate between the
classes is to look at the first number

Class Range
A 0.0.0.0 to 127.255.255.255
B 128.0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 247.255.255.255

11/5/2003 Networking 24

Assigning IP Addresses

• Since every interface must have a unique IP
address, there must be a central authority
for assigning numbers

• That authority is the Internet Network
Information Center, called the InterNIC.

• The InterNIC assigns only network ids, the
assignment of host ids is up to the system
administrator

13

11/5/2003 Networking 25

Transmission Control Protocol

• TCP provides a connection-oriented,
reliable, byte stream service (RFC793)

• TCP is an independent, general purpose
protocol that can be adapted for use with
delivery systems other than IP.

11/5/2003 Networking 26

TCP Streams

• A stream of 8-bit bytes is exchanged across
a TCP connection.

• The treatment of the byte stream by TCP is
similar to the treatment of a file by the
UNIX operating system.

• Connections provided by TCP allow
concurrent transfer in both directions. Such
connections are called full duplex.

14

11/5/2003 Networking 27

TCP Ports

• TCP uses protocol port numbers to identify
the ultimate destination within a machine.

• How does one determine the port to
communicate with?
– Well-known Ports
– Randomly Assigned Ports

11/5/2003 Networking 28

User Datagram Protocol

• UDP is a simple, unreliable, datagram-
oriented, transport layer protocol (RFC768).

16-bit source port 16-bit destination port

16-bit length 16-bit checksum

data (if any)

0 15 16 31

8 bytes

15

11/5/2003 Networking 29

UNIX Networking

• In the early 80s UNIX was being developed
by several organizations

• One of the most influential development
groups was UC Berkeley
– 4BSD provided support for the DARPA

Internet networking protocols, TCP/IP
• Some consider 4BSD responsible for the

popularity of the TCP/IP protocols

11/5/2003 Networking 30

Sockets

• Berkeley sockets are one of the most widely
used communication APIs

• A socket is an object from which messages
are sent and received

The “Network”

16

11/5/2003 Networking 31

java.net

• Classes
– DatagramPacket
– DatagramSocket
– InetAddress
– ServerSocket
– Socket

• Exceptions
– BindException
– ConnectException
– MalformedURLException
– NoRouteToHostException
– ProtocolException
– SocketException
– UnknownHostException
– UnknownServiceException

The java.net package provides networking
support in java.

11/5/2003 Networking 32

Class InetAddress
public boolean equals(Object obj);

public byte[] getAddress();
public static InetAddress[] getAllByName(String host);
public static InetAddress getByName(String host);
public String getHostName();
public static InetAddress getLocalHost();

public int hashCode();
public String toString();

This class represents an Internet Protocol (IP) address.

Applications should use the methods getLocalHost(), getByName(), or
getAllByName() to create a new InetAddress instance.

17

11/5/2003 Networking 33

HostInfo.java
import java.net.*;
import java.io.*;
import java.util.*;

public class HostInfo {
public static void main(String argv[]) {
InetAddress ipAddr;

try {
ipAddr = InetAddress.getLocalHost();
System.out.println("This is "+ipAddr);

}
catch (UnknownHostException e) {
System.out.println("Unknown host");

}
}

11/5/2003 Networking 34

Resolver.java
import java.net.*;
import java.io.*;
import java.util.*;

public class Resolver {
public static void main(String argv[]) {
InetAddress ipAddr;

try {
ipAddr = InetAddress.getByName(argv[0]);
System.out.print("IP address = "+ipAddr+"\n");

}
catch (UnknownHostException e){
System.out.println("Unknown host");

}
}

}

18

11/5/2003 Networking 35

Daytime Service
Most UNIX servers run the daytime service on TCP port 13.

cobalt> telnet kiev.cs.rit.edu 13
Trying 129.21.38.145...
Connected to kiev.
Escape character is '^]'.
Fri Feb 6 08:33:44 1998
Connection closed by foreign host.

It is easy to write a Java daytime client. All the program needs
to do is to establish a TCP connection on port 13 of a remote host.

A TCP style connection is made using the Socket class.

11/5/2003 Networking 36

Class Socket
// Constructors (partial list)
public Socket()
public Socket(InetAddress address, int port);
public Socket(String host, int port);

// Methods (partial list)
public void close();

public InetAddress getInetAddress();
public int getLocalPort();

public InputStream getInputStream();
public OutputStream getOutputStream();

public int getPort();
public String toString();

19

11/5/2003 Networking 37

DayTimeClient.java
import java.net.*; import java.io.*; import java.util.*;

public class DayTimeClient {
static int dayTimePort = 13;

public static void main(String argv[]) {
try {
Socket sock = new Socket(argv[0], dayTimePort);
BufferedReader din = new BufferedReader(
new InputStreamReader(sock.getInputStream()));

String rTime = din.readLine();
System.out.println(rTime);
sock.close();

}
catch (exception e) {}

}
}

11/5/2003 Networking 38

A Java Daytime Server
• It is easy to create a daytime server in Java (the only real problem is

that your Java server will not be able to use port 13).
• The server version of the program will use a ServerSocket to

communicate with a client.
• A ServerSocket will open a TCP port and wait for a connection.
• Once a request is detected, a new port will be created, and the

connection will be established between the client's source port and this
new port.

• Most servers listen for requests on a particular port, and then service
that request on a different port.

• This makes it easy for the server to accept and service requests at the

same time.

20

11/5/2003 Networking 39

Class ServerSocket
// Constructors (partial list)

public ServerSocket(int port);
public ServerSocket(int port, int count);

// Methods (partial list)

public Socket accept();
public void close();

public InetAddress getInetAddress();
public int getLocalPort();

public String toString();

11/5/2003 Networking 40

Class ServerSocket
• A ServerSocket waits for requests to come in over the network. It

performs some operation based on that request, and then possibly
returns a result to the requester.

• The actual work of the ServerSocket is performed by an instance of
the SocketImpl class.

• The abstract class SocketImpl is a common superclass of all classes
that actually implement sockets. It is used to create both client and
server sockets.

• A plain socket implements the SocketImpl methods exactly as

described, without attempting to go through a firewall or proxy.

21

11/5/2003 Networking 41

DayTimeServer
import java.net.*; import java.io.*; import java.util.*;

public class DayTimeServer {
public static void main(String argv[]) {
try {
ServerSocket listen = new ServerSocket(0);
System.out.println("Listening on port: "+listen.getLocalPort());

for(;;) {
Socket clnt = listen.accept();
System.out.println(clnt.toString());
PrintWriter out = new PrintWriter(clnt.getOutputStream(), true);
out.println(new Date());
clnt.close();

}
} catch(Exception e) {}}}

11/5/2003 Networking 42

DayTimeServer in Action
The output from the daytime server looks like this:

kiev> java DayTimeServer
Listening on port: 36109
Socket[addr=cobalt/129.21.37.176,port=32875,localport=36109]
Socket[addr=localhost/127.0.0.1,port=36112,localport=36109]

The client output looks like this:

cobalt> telnet kiev 36109
Trying 129.21.38.145...
Connected to kiev.
Escape character is '^]'.
Fri Feb 06 09:53:00 EST 1998
Connection closed by foreign host.

22

11/5/2003 Networking 43

Multi-Threaded Servers
• It is quite easy, and natural in Java, to make a server multi-threaded.
• In a multi-threaded server a new thread is created to handle each

request.
• Clearly for a server such as the daytime server this is not necessary,

but for an FTP server this is almost required.
• The code for the multi-threaded version of the server consists of a new

class called Connection.

• An instance of this class handles the clients request.

11/5/2003 Networking 44

Connection.java
import java.net.*; import java.io.*; import java.util.*;

class Connection extends Thread {
protected Socket clnt;
public Connection(Socket sock) {
clnt = sock;
this.start();

}

public void run() {
Date today = new Date();
try {
PrintWriter out = new PrintWriter(clnt.getOutputStream(), true);
out.println(today);
client.close();

} catch (IOException e) {} }}

23

11/5/2003 Networking 45

TDayTimeServer.java
import java.net.*; import java.io.*; import java.util.*;

public class TDayTimeServer {
public static void main(String argv[]) {
try {
ServerSocket listen = new ServerSocket(0);
System.out.println("Listening on: "+listen.getLocalPort());

for(;;) {
Socket client = listen.accept();
System.out.println(client.toString());
Connection c = new Connection(client);

}
}
catch(Exception e) { System.out.println("Server terminated"); }

}}

11/5/2003 Networking 46

Datagrams
• Datagram packets are used to implement a connectionless, packet

based, delivery service.
• Each message is routed from one machine to another based solely on

information contained within that packet.
• Multiple packets sent from one machine to another might be routed

differently, and might arrive in any order.
• Packets may be lost or duplicated during transit.
• The class DatagramPacket represents a datagram in Java.

24

11/5/2003 Networking 47

Class DatagramPacket
//Constructors
public DatagramPacket(byte ibuf[], int ilength);
public DatagramPacket(

byte ibuf[], int ilength, InetAddress iaddr, int iport);

// Methods
public synchronized InetAddress getAddress();
public synchronized int getPort();
public synchronized byte[] getData();
int getLength();

void setAddress(InetAddress iaddr);
void setPort(int iport);
void setData(byte ibuf[]);
void setLength(int ilength);

11/5/2003 Networking 48

Class DatagramSocket
• This class represents a socket for sending and receiving datagram

packets.
• Addressing information for outgoing packets is contained in the packet

header.
• A socket that is used to read incoming packets must be bound to an

address (sockets that are used for sending must be bound as well, but
in most cases it is done automatically).

• There is no special datagram server socket class.
• Since packets can be lost, the ability to set timeouts is important.

25

11/5/2003 Networking 49

Class DatagramSocket
// Constructors
DatagramSocket()
DatagramSocket(int port)
DatagramSocket(int port, InetAddress iaddr)

// Methods
void close()
InetAddress getLocalAddress()
int getLocalPort()
int getSoTimeout()
void receive(DatagramPacket p)
void send(DatagramPacket p)
setSoTimeout(int timeout)

11/5/2003 Networking 50

Echo Services
• A common network service is an echo server
• An echo server simply sends packets back to the sender
• A client creates a packet, sends it to the server, and waits for a

response.
• Echo services can be used to test network connectivity and

performance.
• There are typically different levels of echo services. Each provided by

a different layer in the protocol stack.

26

11/5/2003 Networking 51

UDPEchoClient.java
import java.net.*; import java.io.*; import java.util.*;

public class UDPEchoClient {
static int echoPort = 7; static int msgLen = 16; static int timeOut=1000;

public static void main(String argv[]) {
try {

DatagramSocket sock = new DatagramSocket();
DatagramPacket pak;
byte msg[] = new byte[msgLen];

InetAddress echoHost = InetAddress.getByName(argv[0]);
pak = new DatagramPacket(msg,msgLen,echoHost,echoPort);

sock.send(pak);
sock.setSoTimeout(timeOut);
sock.receive(pak);

}
catch (InterruptedIOException e) {System.out.println("Timeout");}
catch (Exception e) {}}}

11/5/2003 Networking 52

UDPEchoServer.java
import java.net.*;import java.io.*;import java.util.*;

public class UdpEchoServer {
static int echoPort = 7000; static int msgLen = 1024;

public static void main(String args[]) {
try {

DatagramSocket sock = new DatagramSocket(echoPort);
DatagramPacket p,reply;
byte msg[] = new byte[msgLen];
pak = new DatagramPacket(msg,msgLen);

for (;;) {
sock.receive(p);
System.out.println(p.getAddress());
reply =

new DatagramPacket(p.getData(),p.getLength(),p.getAddress(),p.getPort());
sock.send(reply);

}
} catch (Exception e) {} }}

