
Computer Science 2 (4003-232)

1

10/24/2005 Event Driven Programming 1

Event Driven Programming

Sean P. Strout (sps@cs.rit.edu)
Robert Duncan (rwd@cs.rit.edu)

10/24/2005 Event Driven Programming 2

Anonymous Classes

• An anonymous class is a local class that does not have a
name.

• An anonymous class allows an object to be created using
an expression that combines object creation with the
declaration of the class.

• This avoids naming a class, at the cost of only ever
being able to create one instance of that anonymous
class.

• This is handy in the AWT (for actionListeners).

Computer Science 2 (4003-232)

2

10/24/2005 Event Driven Programming 3

Anonymous Class Syntax

• An anonymous class is defined as part of a new
expression and must be a subclass or implement an
interface (without stating “extends” or “implements”).

• The class body can define methods but cannot define
any constructors.

new className(argumentList) { classBody }
new interfaceName() { classBody }

10/24/2005 Event Driven Programming 4

Using Anonymous Classes

public class Dog {
private String breed; private String name;

public Dog(String theBreed, String theName) {
breed = theBreed; name = theName;

}

public String getBreed() { return breed; }
public String getName() { return name; }

public int compareTo(Object o) throws ClassCastException {
Dog other = (Dog)o;
int retVal = breed.compareTo(other.getBreed());
if (retVal == 0)

retVal = name.compareTo(other.getName());
return retVal;

}
} // Dog

Computer Science 2 (4003-232)

3

10/24/2005 Event Driven Programming 5

Using Anonymous Classes

public void PrintDogsByName(List dogs) {
List sorted = dogs;

Collections.sort(sorted,
new Comparator () {

public int compare(Object o1, Object o2) {
Dog d1 = (Dog)o1;
Dog d2 = (Dog)o2;

return d1.getName().compareTo(d2.getName());
}
);

Iterator i = sorted.iterator();
while (i.hasNext())

System.out.println(i.next());
}

10/24/2005 Event Driven Programming 6

The Job of a Window Manager

Computer Science 2 (4003-232)

4

10/24/2005 Event Driven Programming 7

What is Event Driven Programming?

• Java’s GUI design is based on event driven programming

• An event is a signal to the program that some external action has
occurred (outside the control of the program)
– A button was clicked
– The mouse was moved
– A key was pressed
– A CD is removed from the CD drive
– A timer in the operating system expired

• When an event is triggered, a special piece of code can run to
respond to the event
– The left mouse button was pressed so fire the current weapon
– The mouse was moved so update the players look direction
– The forward key was pressed so update the players position

• Event driven programming involves writing the handlers and
arranging for the handler to be notified when certain events occur

10/24/2005 Event Driven Programming 8

Events and Event Source

• The component which generated the event is the
source object
– A button is the source of a button clicking action

• The event generated is an object of EventObject

EventObject AWTEvent

ListSelectionEvent

ActionEvent

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

MouseEvent

KeyEvent

Computer Science 2 (4003-232)

5

10/24/2005 Event Driven Programming 9

Events and Event Source

Action: Click button
Source: JButton
Event: ActionEvent

Action: Key press
Source: JTextField
Event: KeyEvent

Action: Press return
Source: JTextField
Event: ActionEvent

Action: Click box
Source: JCheckBox
Event: ItemEvent,

ActionEvent

Action: Click button
Source: JRadioButton
Event: ItemEvent,

ActionEvent

Action: Select menu item
Source: JMenuItem
Event: ActionEvent

Action: Window iconified
Source: Window
Event: WindowEvent

10/24/2005 Event Driven Programming 10

Listeners

• A listener is an object who is interested in receiving
events

• For an object to be a listener it must do two things:
– Implement the corresponding event-listener interface
– Register with the source object who generates the event

When this button is pressed, I want the button
(the source object) to call me (the listener
object) with the event and any pertinent
information

Computer Science 2 (4003-232)

6

10/24/2005 Event Driven Programming 11

Handlers

• For example, the corresponding listener interface for an
ActionEvent is ActionListener

• The ActionListener interface requires the listener to
implement the following handler:

void actionPerformed(ActionEvent event);

When this button is pressed, the button will call
actionPerformed() with the ActionEvent
to all registered listeners

10/24/2005 Event Driven Programming 12

Registration

• A listener registers with the source object by invoking a
registration method in the source object

• The JButton object has an addActionListener
method which takes the listener object

ListenerClass listener = new ListenerClass();
Jbutton button = new Jbutton(“OK”);
button.addActionListener(listener);

Every button push will cause button to call the
actionPerformed method in listener

registration

Computer Science 2 (4003-232)

7

10/24/2005 Event Driven Programming 13

EventObject

• The event object contains information pertinent to the
event type

java.util.EventObject

+ getSource() : Object

java.awt.event.AWTEvent

java.awt.event.ActionEvent

+ getActionCommand() : String
+ getModifier() : int
+ getWhen() : long

Returns the object on which the event
initially occurred

Returns the command string associated
with the action (i.e. the button text)

Returns the timestamp when the event
occurred

10/24/2005 Event Driven Programming 14

Action Events

• Write a program that displays two buttons, OK and
Cancel, in the window. A message is displayed on the
console to indicate which button was pressed and when.

• /usr/local/pub/sps/courses/cs2/events/ActionEvent

% java TestActionEvent
The OK button was clicked at
Mon Jan 24 20:13:58 EST 2005
The Cancel button was clicked at
Mon Jan 24 20:14:03 EST 2005

Computer Science 2 (4003-232)

8

10/24/2005 Event Driven Programming 15

Window Events

• Write a program that demonstrates handling of window
events:
– Window opened
– Window closing/closed
– Window activated
– Window deactivated
– Window iconified
– Window deiconified

• /usr/local/pub/sps/courses/cs2/events/WindowEvent

10/24/2005 Event Driven Programming 16

WindowAdapter

• The WindowAdapter class is a class that implements the
WindowListener interface
– The methods in this class are empty.

• To use the WindowAdapter class:
– Extend this class to create a WindowEvent listener
– Override the methods for the events of interest
– Create a listener object using the extended class and then

register it with a Window using the window's
addWindowListener() method.

Computer Science 2 (4003-232)

9

10/24/2005 Event Driven Programming 17

The Result

import javax.swing.*;
Import java.awt.event.*;

public class SwingFrame {
public static void main(String args[]) {

JFrame win = new JFrame("My First GUI Program");

win.addWindowListener(
new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit (0);

}
}

);

win.setSize(250, 150);
win.setVisible(true);

}
} // SwingFrame

10/24/2005 Event Driven Programming 18

Multiple Listeners

• Write a program which changes values by 1’s and 2’s
using multiple listeners

• /usr/local/pub/sps/courses/cs2/events/MultipleListeners

Listener 1 created: 0
Listener 2 created: 0
Listener 2 inc: 2
Listener 1 inc: 1
Listener 2 inc: 4
Listener 1 inc: 2
Listener 2 dec: 2
Listener 1 dec: 1
Listener 2 inc: 4
Listener 1 inc: 2

Computer Science 2 (4003-232)

10

10/24/2005 Event Driven Programming 19

Mouse Events

• A mouse event is generated whenever a mouse is
pressed, released, clicked, moved or dragged on a
component

java.awt.event.InputEvent

+ getWhen() : long
+ isAltDown() : boolean
+ isControlDown() : boolean
+ isMetaDown() : boolean
+ isShiftDown() : boolean

java.awt.event.MouseEvent

+ getButton() : int
+ getClickCount() : int
+ getPoint() : java.awt.Point
+ getX() : int
+ getY() : int

Which mouse button was clicked?

How many times was it clicked?

Get the coordinates for the mouse
point

10/24/2005 Event Driven Programming 20

Mouse Listeners

• There are two listener interfaces to handle mouse events

java.awt.event.MouseListener

+ mousePressed(e : MouseEvent) : void
+ mouseReleased(e : MouseEvent) : void
+ mouseClicked(e : MouseEvent) : void
+ mouseEntered(e : MouseEvent) : void
+ mouseExited(e : MouseEvent) : void

java.awt.event.MouseMotionListener

+ mouseDragged(e : MouseEvent) : void
+ mouseMoved(e : MouseEvent) : void

Pressed and released

Moved while pressed

Computer Science 2 (4003-232)

11

10/24/2005 Event Driven Programming 21

ScribbleDemo

• Write a program which uses the mouse for scribbling.
You can draw with the left mouse button and erase with
the right mouse button

• /usr/local/pub/sps/courses/cs2/events/ScribbleDemo

10/24/2005 Event Driven Programming 22

Keyboard Events

• A key event is generated whenever a key is pressed,
released, or typed on a component

java.awt.event.InputEvent

java.awt.event.KeyEvent

+ getKeyChar() : char
+ getKeyCode() : int

java.awt.event.KeyListener

+ keyPressed(e : KeyEvent) : void
+ keyReleased(e : KeyEvent) : void
+ keyTyped(e : KeyEvent) : void

character associated with the key

integer associated with the key

Key pressed + released

Computer Science 2 (4003-232)

12

10/24/2005 Event Driven Programming 23

Keyboard Demo

• Write a program that displays a user input character
which can be moved around with the arrow keys and
changed

• /usr/local/pub/sps/courses/cs2/events/KeyboardDemo

KeyEvent.VK_DOWN

KeyEvent.VK_RIGHTKeyEvent.VK_RIGHT

KeyEvent.VK_RIGHT

10/24/2005 Event Driven Programming 24

Timers

• A timer is a source object which can trigger an
ActionEvent at a predefined rate
– It’s not a visible GUI component

javax.swing.Timer

+ Timer(delay : int, listener :
ActionListener)

+ addActionListener(listener :
ActionListener) : void

+ start() : void
+ stop() : void
+ setDelay(delay : int) : void

Create a timer with a specified
delay and a listener

Add a listener to the timer

Start, stop, or set a new
delay on the timer

Computer Science 2 (4003-232)

13

10/24/2005 Event Driven Programming 25

TimerDemo

• Write a program which modifies the keyboard demo to
automatically move the character around the screen
using a timer

• The character should move in the direction of the last
arrow press (initial = right), every 1/10th of a second

• The character should wrap around the screen edges

• The animation should pause if the space key is pressed

• /usr/local/pub/sps/courses/cs2/events/TimerDemo

10/24/2005 Event Driven Programming 26

Testing Your Understanding

• Write a program which draws line segments using the
arrow keys. The line starts from the center of the frame
and draws towards east, north, west, or south when the
arrow keys are pressed

Computer Science 2 (4003-232)

14

10/24/2005 Event Driven Programming 27

GUI Program Design

• The GUI provides a view of the program, it is clearly not
the program.

• Making the GUI code independent of the program code
is a good strategy:
– Changes in the program do not necessarily change the GUI.
– Different GUIs can be developed for the same program.
– Debugging and maintaining both the GUI and the program code

can be done separately and is easier.

10/24/2005 Event Driven Programming 28

Model-View-Controller

• The MVC pattern is commonly used to develop
applications that have a GUI component

• Consists of three parts
– Model

• The program

– View
• The GUI

– Controller
• The event handling mechanism

Computer Science 2 (4003-232)

15

10/24/2005 Event Driven Programming 29

MVC

Model View

Controller

The model passes its data to
the view for rendering

The view determines which events
Are passed to the controller

The controller updates the model
Based on the events received

10/24/2005 Event Driven Programming 30

MVC in Swing

Model

View

Controller

The GUI

Program Logic

The Application

Computer Science 2 (4003-232)

16

10/24/2005 Event Driven Programming 31

A Simple 4 Function Calculator

