
Computer Science 2 (4003-232)

1

10/12/2005 Multithreading 1

Multithreading

Sean P. Strout (sps@cs.rit.edu)
Rob Duncan (rwd@cs.rit.edu)

10/12/2005 Multithreading 2

What is a Process?

• What happens when you run a Java program?
– Launch 3 instances of MyProgram.java while monitoring with top

• See appendix A
• On a single CPU architecture, the operating system

manages how processes share CPU time

java #1

java #2

java #3

Others…

process

time

Computer Science 2 (4003-232)

2

10/12/2005 Multithreading 3

What is a Process?

• A process is a running instance of a program including
all variables and the state of the system
– The Java interpreter is the process which runs your program

• Besides running your program, the JVM must also do
other tasks, like managing the memory your code uses
(garbage collection)

• How does the JVM manage multiple tasks within a single
process?
– threads

10/12/2005 Multithreading 4

What is a Thread

• A thread is a flow of execution of a task in a program

• Java has built-in support for multithreading
– Multiple tasks running concurrently within a single process

• Multiple processes/threads sharing CPU time:

Process #1 T1 T2 T3

Process #2 T2 T3 T1 T4

T3

Computer Science 2 (4003-232)

3

10/12/2005 Multithreading 5

Why Use Threads?

• Multithreading can make your program more responsive
and interactive, and run faster than a non-threaded
version

A thread to handle keyboard input

A thread to handle the graphical user
interface

A thread to handle background printing

A thread to handle auto-saving

10/12/2005 Multithreading 6

Java Threads

• When your program executes as an application, the
JVM starts a thread for the main() method

• When your program runs as an applet, the web browser
starts a thread to run the applet

• Each new thread is an object of a class that:
1. Extends the Thread class –OR-
2. Implements the Runnable interface

• The new object is referred to as a runnable object

Computer Science 2 (4003-232)

4

10/12/2005 Multithreading 7

When Execution Ends

• The Java Virtual Machine continues to execute threads
until either of the following occurs:
– The exit method of class Runtime has been called
– All threads that are not daemon threads have died, either by

returning from the call to the run() or by throwing an
exception that propagates beyond run().

• You cannot restart a dead thread, but you can access its
state and behavior.

10/12/2005 Multithreading 8

Creating Threads by Extending Thread

• A template for developing a custom thread class which
extends the Thread class

// Custom thread class
public class MyThread
extends Thread {
public MyThread(…) {

…
}

// Override the run method
// in Thread
public void run() {

// Run the thread
…

}
}

// Client class
public class Client {
public void method(…) {

// Create thread1
MyThread t1 = new

MyThread(…);

// Start thread1
t1.start();

// Create thread2
MyThread t2 = new

MyThread(…);

// Start thread2
t2.start();

}
}

Java.lang.Thread MyThread

Computer Science 2 (4003-232)

5

10/12/2005 Multithreading 9

Creating Threads by Extending Thread

• Write a program that creates and runs three threads:
– The first thread prints the letter a 5000 times
– The second thread prints the letter b 5000 times
– The third thread prints the integers 1 through 5000

• We’ll make one thread class to handle the first two
threads, PrintChar

• The third thread will be implemented by the PrintNum
class

10/12/2005 Multithreading 10

TestThread.java

/* Three independent threads:
*
* 1. Thread one prints the letter 'a' 5000 times.
* 2. Thread two prints the letter 'b' 5000 times.
* 3. Thread three prints the integers 1 through 5000.
*
*/
public class TestThread {

// main method
public static void main(String args[]) {

// Create threads
PrintChar printA = new PrintChar('a', 5000);
PrintChar printB = new PrintChar('b', 5000);
PrintNum print100 = new PrintNum(5000);

// Start threads
printA.start();
printB.start();
print100.start();

} // main
} // TestThread

Computer Science 2 (4003-232)

6

10/12/2005 Multithreading 11

TestThread.java

class PrintChar extends Thread {
private char charToPrint; // the character to print
private int times; // The times to repeat

// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

} // printChar

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

}
} // run

} // PrintChar

10/12/2005 Multithreading 12

TestThread.java

class PrintNum extends Thread {
private int lastNum; // the last number to print

// Construct a thread with the last number
public PrintNum(int n) {

lastNum = n;
} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);

}
} // run

} // PrintNum

Computer Science 2 (4003-232)

7

10/12/2005 Multithreading 13

TestThread Output

Running TestThread.java reveals that each thread gets to
“run” for a period of time before it gets interrupted – to
allow another thread to run.

Eventually, all of the threads finish running (all output is
done).

10/12/2005 Multithreading 14

Creating Threads by Implementing Runnable

• A template for developing a custom thread class which
implements the Runnable interface

// Custom thread class
public class MyThread
implements Runnable {
public MyThread(…) {

…
}

// Override the run method
// in Thread
public void run() {

// Run the thread
…

}
}

// Client class
public class Client {
public void method(…) {

// Create thread1
Thread t1 = new Thread (

new MyThread(…));

// Start thread1
t1.start();

// Create thread2
Thread t2 = new Thread (

new MyThread(…));

// Start thread2
t2.start();

}
}

Java.lang.Runnable MyThread

Computer Science 2 (4003-232)

8

10/12/2005 Multithreading 15

Creating Threads by Implementing Runnable

• If your custom thread subclass already inherits
from another superclass, you must implement
the Runnable interface
– The interface only requires the run() method to be defined

• The custom thread class gets wrapped into a
Thread object when created

Thread t1 = new Thread(new PrintChar(‘a’, 5000));
Thread t2 = new Thread(new PrintChar(‘b’, 5000));
Thread t3 = new Thread (new PrintInt(5000));

10/12/2005 Multithreading 16

TestRunnable.java

/* Three independent threads:
*
* 1. Thread one prints the letter 'a' 5000 times.
* 2. Thread two prints the letter 'b' 5000 times.
* 3. Thread three prints the integers 1 through 5000.
*
*/

public class TestRunnable {

// main method
public static void main(String args[]) {

// Create threads
Thread printA = new Thread (new PrintChar('a', 5000));
Thread printB = new Thread (new PrintChar('b', 5000));
Thread print100 = new Thread (new PrintNum(5000));

printA.start();
printB.start();
print100.start();

} // main
} // TestRunnable

Computer Science 2 (4003-232)

9

10/12/2005 Multithreading 17

TestRunnable.java

class PrintChar implements Runnable {
private char charToPrint; // the character to print
private int times; // The times to repeat

// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

} // printChar

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

}
} // run

} // PrintChar

10/12/2005 Multithreading 18

TestRunnable.java

class PrintNum implements Runnable {
private int lastNum; // the last number to print

// Construct a thread with the last number
public PrintNum(int n) {

lastNum = n;
} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);

}
} // run

} // PrintNum

Computer Science 2 (4003-232)

10

10/12/2005 Multithreading 19

TestRunnable Output

The output will be the same as TestThread.java. The only difference is
the mechanism used to get the thread started. Once they are
started, they are treated the same by the JVM.

10/12/2005 Multithreading 20

Thread class

+ Thread()
+ Thread(target : Runnable)
+ run() : void
+ start() : void
+ interrupt() : void
+ isAlive() : boolean
+ setPriority(p : int) : void
+ join() : void
+ sleep(millis : long) : void
+ yield() : void
+ isInterrupted() : boolean
+ currentThread() : Thread

java.lang.Thread

java.lang.Runnable

Computer Science 2 (4003-232)

11

10/12/2005 Multithreading 21

Thread Control - yield

• Use yield() to temporarily release CPU time for other
threads

Thread #1 T1

Thread #2 T2

T1 yields

T1

T2 yields

Scheduled time

Scheduled time

10/12/2005 Multithreading 22

TestYield.java

/* Three independent threads which yield after each output statement
*
* 1. Thread one prints the letter 'a' 10 times.
* 2. Thread two prints the letter 'b' 10 times.
* 3. Thread three prints the integers 1 through 10.
*/
public class TestYield {

// main method
public static void main(String args[]) {

// If there are cmd line args, the threads won't yield
boolean yield = args.length > 0 ? false : true;

// Create threads
PrintChar printA = new PrintChar('a', 10, yield);
PrintChar printB = new PrintChar('b', 10, yield);
PrintNum print100 = new PrintNum(10, yield);

// Start threads
printA.start();
printB.start();
print100.start();

} // main
} // TestYield

Computer Science 2 (4003-232)

12

10/12/2005 Multithreading 23

TestYield.java

class PrintChar extends Thread {
private char charToPrint; // the character to print
private int times; // The times to repeat
private boolean yield; // Do I yield?
// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t, boolean y) {

charToPrint = c;
times = t;
yield = y;

} // printChar
// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

// Let other threads run if told to
if (yield) {

Thread.yield();
}

}
} // run

} // PrintChar

10/12/2005 Multithreading 24

TestYield.java

class PrintNum extends Thread {
private int lastNum; // the last number to print
private boolean yield; // Do I yield?

// Construct a thread with the last number
public PrintNum(int n, boolean y) {

lastNum = n;
yield = y;

} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);

// Let other threads run if told to
if (yield) {

Thread.yield();
}

}
} // run

} // PrintNum

Computer Science 2 (4003-232)

13

10/12/2005 Multithreading 25

TestYield Output

OUTPUT:

% java TestYield false
a a a a a a a a a a a b b b b b b b b b b b 0 1 2 3 4 5 6 7 8 9 10

% java TestYield
a b b b b b b b b b b b 0 1 2 3 4 a a a a a a a a a a 5 6 7 8 9 10

10/12/2005 Multithreading 26

Thread Control - sleep

• sleep() causes the thread to cease execution for a
specified number of milliseconds

Thread #1 T1

Thread #2 T2

T1 sleeps

Scheduled time

T1

T1 wakes up

T2 allowed to run T2 must stop running

ZzZzZzZzZzZzZzZzZz………

Computer Science 2 (4003-232)

14

10/12/2005 Multithreading 27

TestSleep.java
/* Threads 1 and 2 will sleep for a specified amount of time.
*
* 1. Thread one prints the letter 'a' 10 times.
* 2. Thread two prints the letter 'b' 10 times.
* 3. Thread three prints the integers 1 through 10.
*
*/

public class TestSleep {

// main method
public static void main(String args[]) {

// If there are cmd line args, the threads won't sleep
int sleep = args.length == 0 ? 0 : Integer.parseInt(args[0]);

// Create threads
PrintChar printA = new PrintChar('a', 10, sleep);
PrintChar printB = new PrintChar('b', 10, sleep);
PrintNum print100 = new PrintNum(10);

// Start threads
printA.start();
printB.start();
print100.start();

} // main
} // TestSleep

10/12/2005 Multithreading 28

TestSleep.java

class PrintChar extends Thread {
private char charToPrint; // the character to print
private int times; // The times to repeat
private int sleep; // amount to sleep
// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t, int s) {

charToPrint = c;
times = t;
sleep = s;

} // printChar
// Override the run() method to tell the system what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

// sleep for specified amount of time
try {

Thread.sleep(sleep);
}
catch (InterruptedException ex) {
}

}
} // run

} // PrintChar

Computer Science 2 (4003-232)

15

10/12/2005 Multithreading 29

TestSleep.java

class PrintNum extends Thread {
private int lastNum; // the last number to print

// Construct a thread with the last number
public PrintNum(int n) {

lastNum = n;
} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);

}
} // run

} // PrintNum

10/12/2005 Multithreading 30

TestSleep Output

OUTPUT:

% java TestSleep
a b 0 1 b a a b 2 3 b a a b 4 5 b a a b 6 7 b a a b 8 9 b a a b
% java TestSleep 1
a b 0 1 2 3 4 5 6 7 8 9 10 b a a b b a a b b a a b b a a b b a a b

% java TestSleep 10
a b 0 1 2 3 4 5 6 7 8 9 10 a b a b a b a b a b a b a b a b a b a b

% java TestSleep 20
a b 0 1 2 3 4 5 6 7 8 9 10 a b a b a b a b a b a b a b a b a b a b

Computer Science 2 (4003-232)

16

10/12/2005 Multithreading 31

Thread Control - join

• Use join() to force one thread to wait for another
thread to finish

Thread #1 T1

Thread #2 T2

join on T2

Scheduled time

T1

T2 finished

T2 finishes

T2

Thread #3 T3 T3

10/12/2005 Multithreading 32

TestJoin.java

/* Three independent threads. The third thread prints out half
* its numbers and then waits for thread 2 to finish.
* 1. Thread one prints the letter 'a' 200 times.
* 2. Thread two prints the letter 'b' 200 times.
* 3. Thread three prints the integers 1 through 200.
*/
public class TestJoin {

private Thread printA;
private Thread printB;
private Thread printC;
// Constructor makes the 3 threads and starts them
public TestJoin() {

// Create threads
Thread printA = new Thread (new PrintChar('a', 200));
Thread printB = new Thread (new PrintChar('b', 200));
// pass in a reference to printB
Thread print100 = new Thread (new PrintNum(200, printB));
// start the threads
printA.start(); printB.start(); print100.start();

} // TestJoin
// main method
public static void main(String args[]) {

TestJoin test = new TestJoin();
} // main

} // TestJoin

Computer Science 2 (4003-232)

17

10/12/2005 Multithreading 33

TestJoin.java

class PrintChar implements Runnable {
private char charToPrint; // the character to print
private int times; // The times to repeat

// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

} // printChar

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

}
} // run

} // PrintChar

10/12/2005 Multithreading 34

TestJoin.java

class PrintNum implements Runnable {
private int lastNum; // the last number to print
private Thread waitOnThread; // the thread to wait on

// Construct a thread with the last number
public PrintNum(int n, Thread t) {

lastNum = n;
waitOnThread = t;

} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);
try {

if (i==lastNum/2) {
waitOnThread.join();

}
} catch (InterruptedException ex) {
}

}
} // run

} // PrintNum

Computer Science 2 (4003-232)

18

10/12/2005 Multithreading 35

TestJoin Output

OUTPUT:

a
a
a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 b
b
b
b
b a a a a a a a a a a
a
a 101 102 103 104 105 106 107 108
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

10/12/2005 Multithreading 36

Thread Control – wait(), notify() and notifyAll()

• There are three more methods defined in the Object
class which are used to facilitate communication among
active threads

• public final void wait() throws InterruptedException
– Forces the thread to wait until the notify or notifyAll

method is called for the object to which wait is called

• public final void notify()
– Awakens one of the threads that are waiting on this object.

Which one is notified depends on system implementation

• public final void notifyAll()
– Awakens all the threads that are waiting on this object

Computer Science 2 (4003-232)

19

10/12/2005 Multithreading 37

Thread Control – wait(), notify() and notifyAll()

Thread #1 T1

Thread #2 T2

wait on obj

Scheduled time

T1

T1 allowed to run

notify on obj

T2

Thread #3 T3

Scheduled time

wait on obj

T2

10/12/2005 Multithreading 38

Thread States

• Threads can be in one of five states

New Ready

Running

Wait for
target to

finish

Wait for
time out

Wait to be
notified

Finished

Blocked

Thread
created start()

run()

yield() or
timeout

run()
returns

interrupt()

join() sleep() wait()

notify() or
notifyAll()interrupt()

Timeout

Computer Science 2 (4003-232)

20

10/12/2005 Multithreading 39

Thread States

• The Running state is the only time the CPU is executing
the thread’s code

• isAlive() returns true if the thread is in the Ready,
Blocked or Running state

• interrupt() interrupts a thread in the following way:
– If the thread is in the Ready or Running state, its interrupted

flag is set and it’s moved to the Blocked state
– If the thread is currently Blocked, it is awakened and enters the

Ready state, and a java.lang.InterruptedException is
thrown

10/12/2005 Multithreading 40

isAlive()

public class WorkerThread extends Thread {
private int result = 0;

public void run() {
// Perform a complicated time consuming calculation
// and store the answer in the variable result

}

public static void main(String args[]) {
WorkerThread t = new WorkerThread();
t.start();

while (t.isAlive());

System.out.println(result);
}

}

What happens if this
statement is left out?

• This solution works, but is there a better method?

Computer Science 2 (4003-232)

21

10/12/2005 Multithreading 41

Thread Priorities

• Java assigns every thread a priority. By default, a
thread inherits the priority of the thread that spawned it
– Mutator is setPriority() and accessor is getPriority()

• Priorities range from 1 to 10
– Thread.MIN_PRIORITY = 1
– Thread.NORM_PRIORITY = 5
– Thread.MAX_PRIORITY = 10

• A situation known as contention or starving occurs
when higher priority threads don’t yield and lower
priority threads never get a chance to run

10/12/2005 Multithreading 42

TestPriority.java
/* Three independent threads. The third thread has the
* highest priority and should finish first.
*
* 1. Thread one prints the letter 'a' 5000 times.
* 2. Thread two prints the letter 'b' 5000 times.
* 3. Thread three prints the integers 1 through 5000.
*/

public class TestPriority {
public static void main(String args[]) {

// Create threads
PrintChar printA = new PrintChar('a', 5000);
PrintChar printB = new PrintChar('b', 5000);
PrintNum print100 = new PrintNum(5000);

// Set priority on printA and printB to min
printA.setPriority(Thread.MIN_PRIORITY);
printB.setPriority(Thread.MIN_PRIORITY);

// Set priority on print100 to the max
print100.setPriority(Thread.MAX_PRIORITY);

// Start threads. Even though print100 is started
// last it will finish first because of priorities.
printA.start();
printB.start();
print100.start();

} // main
} // TestPriority

Computer Science 2 (4003-232)

22

10/12/2005 Multithreading 43

TestPriority.java

class PrintChar extends Thread {
private char charToPrint; // the character to print
private int times; // The times to repeat

// Construct a thread with specified character and number
// of times to print the character
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

} // printChar

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=times; i++) {
System.out.print(" " + charToPrint);

}
} // run

} // PrintChar

10/12/2005 Multithreading 44

TestPriority.java

class PrintNum extends Thread {
private int lastNum; // the last number to print

// Construct a thread with the last number
public PrintNum(int n) {

lastNum = n;
} // PrintNum

// Override the run() method to tell the system
// what the thread will do
public void run() {

for (int i=0; i<=lastNum; i++) {
System.out.print(" " + i);

}
} // run

} // PrintNum

Computer Science 2 (4003-232)

23

10/12/2005 Multithreading 45

TestPriority Output

The third thread completes before the other two.

10/12/2005 Multithreading 46

Thread Groups

• A thread group is a set of threads with similar
functionality on which you can perform the same
operations

• Construct a thread group with a unique name:
ThreadGroup grp = new ThreadGroup(“thread group”);

• Using the Thread constructor, place it in the group:
Thread t = new Thread(grp, new MyThread(), “label”);

• Each thread must be started individually

• To find out how many threads in the group are running:
grp.activeCount();

Computer Science 2 (4003-232)

24

10/12/2005 Multithreading 47

Resource Conflict

• Write a program which launches 100 threads, each of
which adds a penny to an account. Assume the account
is initially empty.

+ run() : void

AddAPennyThread

java.lang.Thread

- bank : Account
- Thread : Thread[]

+ main(args : String[]) : void

AccountConflict

+ balance : int

+ getBalance() : int
+ deposit(amt : int) : void

Account100

10/12/2005 Multithreading 48

AccountConflict.java
public class AccountConflict {

private Account account = new Account();
private Thread thread[] = new Thread[100];

// Start the program and print out the balance at the end
public static void main(String args[]) {

AccountConflict test = new AccountSync();
System.out.println("The balance is: " + test.account.getBalance());

} // main

// Constructor does the work of creating and launching the threads
public AccountSync() {

ThreadGroup grp = new ThreadGroup("account group");
boolean done = false;

// Create an launch 100 threads
for (int i=0; i<100; i++) {

thread[i] = new Thread(grp, new AddAPennyThread(),
"thread" + i);

thread[i].start();
}
// Wait for all the threads in the group to finish
while (!done) {

if (grp.activeCount() == 0) {
done = true;

}
}

} // AccountConflict

Computer Science 2 (4003-232)

25

10/12/2005 Multithreading 49

AccountConflict.java

// Nested class for the threads - contains the run method
class AddAPennyThread extends Thread {

public void run() {
account.deposit(1);

} // run
} // AddAPennyThread

// Nested class for the "resource".
class Account {

private int balance = 0; // current balance
public int getBalance() {

return balance;
} // getBalance
public void deposit(int amount) {

int newBalance = balance + amount;

balance = newBalance;
} // deposit

} // Account
}

10/12/2005 Multithreading 50

AccountConflict Output

OUTPUT:

The balance is: 42

Computer Science 2 (4003-232)

26

10/12/2005 Multithreading 51

Resource Conflict

• Consider this scenario with the previous example:

Step balance thread[0] thread[1]
1 0 newBalance = balance+1
2 0 newBalance = balance+1
3 1 balance = newBalance
4 1 balance = newBalance

• Multiple threads can store the value of the common
balance before it is updated individually

• This is known as a race condition

• A class is thread-safe if it does not cause a race
condition in the presence of multiple threads

10/12/2005 Multithreading 52

Critical Region

• To avoid race conditions, you must prevent more than
one thread from accessing the critical region of a
program

• Only one thread should be allowed to enter the
deposit method at a time

public void deposit(int amount) {
int newBalance = balance + amount;
balance = newBalance;

}

class Account:

Computer Science 2 (4003-232)

27

10/12/2005 Multithreading 53

Synchronizing Instance Methods

• To synchronize an instance methods means to require
a thread to obtain a lock on the object for which the
method was invoked

• To make deposit thread-safe in Account:
public synchronized void deposit(int amount) { … }

class AddAPennyThread extends Thread {
public void run() {

account.deposit(1);
}

}

class AddAPennyThread:

Synchronize on the
account object

10/12/2005 Multithreading 54

AccountSync.java
public class AccountSync {

private Account account = new Account();
private Thread thread[] = new Thread[100];

// Start the program and print out the balance at the end
public static void main(String args[]) {

AccountSync test = new AccountSync();
System.out.println("The balance is: " + test.account.getBalance());

} // main

// Constructor does the work of creating and launching the threads
public AccountSync() {

ThreadGroup grp = new ThreadGroup("account group");
boolean done = false;

// Create an launch 100 threads
for (int i=0; i<100; i++) {

thread[i] = new Thread(grp, new AddAPennyThread(),
"thread" + i);

thread[i].start();
}
// Wait for all the threads in the group to finish
while (!done) {

if (grp.activeCount() == 0) {
done = true;

}
}

} // AccountSync

Computer Science 2 (4003-232)

28

10/12/2005 Multithreading 55

AccountSync.java

// Nested class for the threads - contains the run method
class AddAPennyThread extends Thread {

public void run() {
account.deposit(1);

} // run
} // AddAPennyThread

// Nested class for the "resource".
class Account {

private int balance = 0; // current balance
public int getBalance() {

return balance;
} // getBalance
public synchronized void deposit(int amount) {

int newBalance = balance + amount;

balance = newBalance;
} // deposit

} // Account
}

10/12/2005 Multithreading 56

AccountSync Output

OUTPUT:

The balance is: 100

Computer Science 2 (4003-232)

29

10/12/2005 Multithreading 57

Synchronizing Instance Methods

• The preceding scenario with synchronization:

Thread[0]

Acquire lock on account

Enter deposit

Release the lock

Thread[1]

Acquire lock on account

Enter deposit

Release the lock

Waiting to acquire lock
on account

balance = 1

balance = 2

10/12/2005 Multithreading 58

Synchronized Statements

• You could lock on a portion of a method using
synchronized statements

• This can increase concurrency and improve performance

class AddAPennyThread extends Thread {
public void run() {

synchronized (account) {
account.deposit(1);

}
}

}

class AddAPennyThread:

Computer Science 2 (4003-232)

30

10/12/2005 Multithreading 59

Thread Cooperation

• Synchronization avoids race conditions by ensuring
mutual exclusion to critical regions

• Threads also need a way to cooperate without requiring
threads to finish

• The Object methods wait(), notify() and
notifyAll() must be called in a synchronized
method/block or else an IllegalMonitorStateException
will occur

10/12/2005 Multithreading 60

Thread Cooperation

synchronized (obj) {
try {

// Wait for condition
while (!condition)

obj.wait();

// Do something…
}
catch InterruptedException ex) {

ex.printStackTrace();
}

}

synchronized (obj) {
// Do stuff…

// When condition is true
obj.notify();

}
resume

• The template for coordinating threads:

Or obj.notifyAll() to
wake up all threads

Thread 1 Thread 2

Computer Science 2 (4003-232)

31

10/12/2005 Multithreading 61

Producer/Consumer

• The producer/consumer problem is a classic
operating system issue involving threads

• The idea is you have a producer which creates new
resources and adds them to some collection

• The consumer takes elements out of the same collection,
when available, and uses them

• We must be careful to design a solution which avoids:
– Producer generating resources which the consumer misses or

gets out of order
– Consumer getting the same element more than once

10/12/2005 Multithreading 62

Producer/Consumer

- cubbyHole : CubbyHole
- number : int

+ run() : void

Producer

- cubbyHole : CubbyHole
- number : int

+ run() : void

Consumer

- contents : int
- available : boolean

+ get() : int
+ put() : int

CubbyHole

+ main(args : String[]) : void

ProducerConsumerTest

Computer Science 2 (4003-232)

32

10/12/2005 Multithreading 63

Producer

public class Producer extends Thread {
private CubbyHole cubbyhole;
private int number;

public Producer(CubbyHole c, int number) {
cubbyhole = c;
this.number = number;

}
public void run() {

for (int i = 0; i < 10; i++) {
cubbyhole.put(i);
System.out.println("Producer #" + this.number

+ " put: " + i);
try {

sleep((int)(Math.random() * 100));
} catch (InterruptedException e) { }

}
}

}

10/12/2005 Multithreading 64

Consumer

public class Consumer extends Thread {
private CubbyHole cubbyhole;
private int number;

public Consumer(CubbyHole c, int number) {
cubbyhole = c;
this.number = number;

}

public void run() {
int value = 0;
for (int i = 0; i < 10; i++) {

value = cubbyhole.get();
System.out.println("Consumer #" + this.number

+ " got: " + value);
}

}
}

Computer Science 2 (4003-232)

33

10/12/2005 Multithreading 65

CubbyHole 1

public class CubbyHole {
private int contents;
private boolean available = false;

public int get() {
available = false;
return contents;

}

public synchronized void put(int value) {
contents = value;
available = true;

}
}

10/12/2005 Multithreading 66

Producer/Consumer Test

public class ProducerConsumerTest {
public static void main(String[] args) {

CubbyHole c = new CubbyHole();
Producer p1 = new Producer(c, 1);
Consumer c1 = new Consumer(c, 1);

p1.start();
c1.start();

}
}

Computer Science 2 (4003-232)

34

10/12/2005 Multithreading 67

Producer/Consumer Output

OUTPUT:
Producer #1 put: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Producer #1 put: 1
Producer #1 put: 2
Producer #1 put: 3
Producer #1 put: 4
Producer #1 put: 5
Producer #1 put: 6
Producer #1 put: 7
Producer #1 put: 8
Producer #1 put: 9

10/12/2005 Multithreading 68

CubbyHole 2

public class CubbyHole {
private int contents;
private boolean available = false;
public synchronized int get() {

while (available == false) {
try {

wait();
} catch (InterruptedException e) { }

}
available = false;
notifyAll();
return contents;

}
public synchronized void put(int value) {

while (available == true) {
try {

wait();
} catch (InterruptedException e) { }

}
contents = value;
available = true;
notifyAll();

}
}

Computer Science 2 (4003-232)

35

10/12/2005 Multithreading 69

Deadlock

• Sometimes two or more threads need to acquire the
locks on several shared objects

• Deadlock occurs when each thread has the lock on one
of the objects and is waiting for the lock on the other

synchronized (obj1) {
// do stuff…
synchronized (obj2) {

// do stuff…
}

}

Thread 1
synchronized (obj2) {

// do stuff…
synchronized (obj1) {

// do stuff…
}

}

Thread 2

Waiting for thread 2 to
release lock on obj2

Waiting for thread 1 to
release lock on obj1

10/12/2005 Multithreading 70

DeadLock.java
/* This is a demonstration of how NOT to write multi-threaded programs.
* It is a program that purposely causes deadlock between two threads that
* are both trying to acquire locks for the same two resources.
* To avoid this sort of deadlock when locking multiple resources, all threads
* should always acquire their locks in the same order.
**/

public class Deadlock {
public static void main(String[] args) {

// These are the two resource objects we'll try to get locks for
final Object resource1 = "resource1";
final Object resource2 = "resource2";
// Here's the first thread. It tries to lock resource1 then resource2
Thread t1 = new Thread() {
public void run() {

// Lock resource 1
synchronized(resource1) {
System.out.println("Thread 1: locked resource 1");
// Pause for a bit, simulating some file I/O or something.
// Basically, we just want to give the other thread a chance to
// run. Threads and deadlock are asynchronous things, but we're
// trying to force deadlock to happen here...
try { Thread.sleep(50); } catch (InterruptedException e) {}
// Now wait 'till we can get a lock on resource 2
synchronized(resource2) {
System.out.println("Thread 1: locked resource 2");

}
}

}
};

Computer Science 2 (4003-232)

36

10/12/2005 Multithreading 71

Deadlock.java
// Here's the second thread. It tries to lock resource2 then resource1

Thread t2 = new Thread() {
public void run() {

// This thread locks resource 2 right away
synchronized(resource2) {
System.out.println("Thread 2: locked resource 2");

// Then it pauses, for the same reason as the first thread does
try { Thread.sleep(50); } catch (InterruptedException e) {}

// Then it tries to lock resource1. But wait! Thread 1 locked
// resource1, and won't release it 'till it gets a lock on
// resource2. This thread holds the lock on resource2, and won't
// release it 'till it gets resource1. We're at an impasse. Neither
// thread can run, and the program freezes up.
synchronized(resource1) {
System.out.println("Thread 2: locked resource 1");

}
}

}
};

// Start the two threads. If all goes as planned, deadlock will occur,
// and the program will never exit.
t1.start();
t2.start();

}
}

10/12/2005 Multithreading 72

Deadlock

• To fix deadlock, use the technique known as resource
ordering

• Assign an order on all the objects whose locks must be
acquired and assure each thread acquires the lock in
that order

synchronized (obj1) {
// do stuff…
synchronized (obj2) {

// do stuff…
}

}

Thread 1
synchronized (obj1) {

// do stuff…
synchronized (obj2) {

// do stuff…
}

}

Thread 2

Computer Science 2 (4003-232)

37

10/12/2005 Multithreading 73

Review - Java’s Monitor

• The mechanism that Java uses to support
synchronization is often called the monitor

• The two types of thread synchronization are:
– Mutual exclusion using synchronized keeps threads from

interfering with one another when sharing data
– Coooperation via wait and notify allows threads to safely

share data to achieve a common goal

• A monitor region is like a room with some data that
only one thread is allowed into at a time

10/12/2005 Multithreading 74

Scheduling Implementations

• Scheduling is typically either:
– non-preemptive
– preemptive

• Most Java implementations use preemptive scheduling.
– the type of scheduler will depend on the JVM that you use.
– In a non-preemptive scheduler a thread leaves the running state

only when it is ready to do so.

• What does this mean for your applications?

Computer Science 2 (4003-232)

38

10/12/2005 Multithreading 75

Appendix A

public class MyProgram {
public static void main(String args[]) {

int i=0;
while (true) {

i = i + 1;
}

}
}

% java MyProgram &
% java MyProgram &
% java MyProgram &
% top

