Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

« Solve each part recursively.

» Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size 3n.
» Solve two parts recursively.
» Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n2.
« Divide-and-conquer: nlog n. Divide et impera.
Veni, vidi, vici.
- Julius Caesar



5.1 Mergesort




Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.

List names in a phone book.

Display Google PageRank
results.

Problems become easier once
sorted.
Find the median.
Find the closest pair.
Binary search ina
database.
Identify statistical
outliers.
Find duplicates in a mailing
list.

Non-obvious sorting applications.

Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of
particles.

Book recommendations on
Amazon.

Load balancing on a parallel
computer.



Mergesort

Mergesort.
- Divide array into two halves.
« Recursively sort each half.
« Merge two halves o make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide 0O(1)
A G L O R H I M S T sort  2T(n/2)

A G H I L M O R S T merge O(n)



Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? D>
« Linear number of comparisons.
= Use temporary array.

sl = s s -
» ¢ 2 1 IR

Challenge for the bored. In-place merge. [Kronrud, 1969]
T

using only a constant amount of extra storage



A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) =< &T( [n/2] )J + \T( |n/2] )J + 72 otherwise
solve left half solve riéht half ~ MCrgNg

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.



Proof by Recursion Tree

sorting both halves merging

0 if n=1
T(n) = 2T(n/2) + n otherwise

T(n) n
T(n/2) T(n/2) 2(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) 4(n/4)
log,n
2k(n / 2%)
T(2) T(2) T2) T2) T(2) T(2) T(2) T(2) n/2(2)

nlog,n



Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = nlog, n.
t
assumes n is a power of 2
0 if n=1
T(n) = 2T(m/2) + n  otherwise

sorting both halves merging

Pf. Forn»>1: T(n) _ 2T(n/2) .
n n
_ Tmy
nl/?2
_ T L
nl4
= I(n/n) + 1 +---+ 1
nin —

log, n
= logynm



Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = nlog, n.

0 if n=1
T(n) = 2T(m/2) + n  otherwise

sorting both halves merging

Pf. (by induction on n)

= Basecase: n=1.

« Inductive hypothesis: T(n) = nlog, n.
« Goal: show that T(2n) = 2n log, (2n).

T2n) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(log2(2n)—1) + 2n
= 2nlog,(2n)

1

assumes n is a power of 2

10



Claim. If T(n) satisfies the following recurrence, then T(n) <n[lgn].

T(n)

<

Analysis of Mergesort Recurrence

0
\T( [n/2] )/ + I([|ni2]) + L3
solve left half solve right half ~ Merging

Pf. (by induction on n)
= Base case: n=1
« Definen;=[n/2], n,=[n/2].
« Induction step: assume true forl,?2, ..., n-1.

T(n)

IA

IA

IA

T'(n) + T(ny) + n

t
if n=1 logzn

otherwise

n, = |-n/2-|
< [2l=1)2]
= 2lerly)

= lgn, = [lgn] -1

1



