
2

Divide-and-Conquer

Divide-and-conquer.
  Break up problem into several parts.
  Solve each part recursively.
  Combine solutions to sub-problems into overall solution.

Most common usage.
  Break up problem of size n into two equal parts of size ½n.
  Solve two parts recursively.
  Combine two solutions into overall solution in linear time.

Consequence.
  Brute force: n2.
  Divide-and-conquer: n log n. Divide et impera.

Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

4

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank
 results.

Problems become easier once
 sorted.

Find the median.
Find the closest pair.
Binary search in a
 database.
Identify statistical
 outliers.
Find duplicates in a mailing
 list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of
 particles.
Book recommendations on
 Amazon.
Load balancing on a parallel
 computer.
. . .

Sorting

Sorting. Given n elements, rearrange in ascending order.

5

Mergesort

Mergesort.
  Divide array into two halves.
  Recursively sort each half.
  Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
  Linear number of comparisons.
  Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

7

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
 Initially we assume n is a power of 2 and replace ≤ with =.

€

T(n) ≤

 0 if n =1
T n /2 ()
solve left half

1 2 4 3 4
+ T n /2 ()

solve right half
1 2 4 3 4

+ n
merging
{ otherwise

8

Proof by Recursion Tree

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
1 2 4 3 4

+ n
merging

{ otherwise

9

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

€

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

L

=
T(n /n)

n /n
+ 1 +L+ 1

log2 n
1 2 4 3 4

= log2 n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
1 2 4 3 4

+ n
merging

{ otherwise

assumes n is a power of 2

10

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
  Base case: n = 1.
  Inductive hypothesis: T(n) = n log2 n.
  Goal: show that T(2n) = 2n log2 (2n).

€

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n)−1() + 2n
= 2n log2(2n)

assumes n is a power of 2

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
1 2 4 3 4

+ n
merging

{ otherwise

11

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n lg n.

Pf. (by induction on n)
  Base case: n = 1.
  Define n1 = n / 2 , n2 = n / 2.
  Induction step: assume true for 1, 2, ... , n–1.

€

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1 + n2 lg n2 + n
≤ n1 lgn2 + n2 lg n2 + n
= n lgn2 + n
≤ n(lgn −1) + n
= n lgn

€

n2 = n /2

≤ 2 lgn / 2
= 2 lgn / 2

⇒ lgn2 ≤ lgn −1

€

T(n) ≤

 0 if n =1
T n /2 ()
solve left half

1 2 4 3 4
+ T n /2 ()

solve right half
1 2 4 3 4

+ n
merging
{ otherwise

log2n

