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Divide-and-Conquer 

Divide-and-conquer. 
  Break up problem into several parts. 
  Solve each part recursively. 
  Combine solutions to sub-problems into overall solution. 

Most common usage. 
  Break up problem of size n into two equal parts of size ½n. 
  Solve two parts recursively. 
  Combine two solutions into overall solution in linear time. 

Consequence. 
  Brute force:  n2. 
  Divide-and-conquer:  n log n. Divide et impera. 

Veni, vidi, vici. 
        - Julius Caesar 



5.1  Mergesort 
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Obvious sorting applications. 
List files in a directory. 
Organize an MP3 library. 
List names in a phone book. 
Display Google PageRank
 results. 

Problems become easier once
 sorted. 

Find the median.  
Find the closest pair. 
Binary search in a
 database. 
Identify statistical
 outliers. 
Find duplicates in a mailing
 list. 

Non-obvious sorting applications. 
Data compression. 
Computer graphics. 
Interval scheduling. 
Computational biology. 
Minimum spanning tree. 
Supply chain management. 
Simulate a system of
 particles. 
Book recommendations on
 Amazon. 
Load balancing on a parallel
 computer. 
. . . 

Sorting 

Sorting.  Given n elements, rearrange in ascending order. 
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Mergesort 

Mergesort. 
  Divide array into two halves. 
  Recursively sort each half. 
  Merge two halves to make sorted whole. 

merge 

sort 

divide 

A L G O R I T H M S 

A L G O R I T H M S 

A G L O R H I M S T 

A G H I L M O R S T 

Jon von Neumann (1945) 

O(n) 

2T(n/2) 

O(1) 
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Merging 

Merging.  Combine two pre-sorted lists into a sorted whole. 

How to merge efficiently? 
  Linear number of comparisons. 
  Use temporary array. 

Challenge for the bored.  In-place merge.  [Kronrud, 1969] 

A G L O R H I M S T 

A G H I 

using only a constant amount of extra storage 
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A Useful Recurrence Relation 

Def.  T(n)  = number of comparisons to mergesort an input of size n. 

Mergesort recurrence.   

Solution.  T(n) = O(n log2 n).  

Assorted proofs.  We describe several ways to prove this recurrence.
 Initially we assume n is a power of 2 and replace ≤ with =. 

    

€ 

T(n) ≤

 0 if  n =1
T n /2 ( )
solve left half

1 2 4 3 4 
+ T n /2 ( )

solve right half
1 2 4 3 4 

+ n
merging
{ otherwise
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Proof by Recursion Tree 

T(n) 

T(n/2) T(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 

n 

T(n / 2k) 

2(n/2) 

4(n/4) 

2k (n / 2k) 

n/2 (2) 

. . . 

. . . 
log2n 

n log2n 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
1 2 4 3 4 

+ n
merging

{ otherwise
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Proof by Telescoping 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

Pf.  For n > 1: 

    

€ 

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

L

=
T(n /n)

n /n
+ 1 +L+ 1

log2 n
1 2 4 3 4 

= log2 n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
1 2 4 3 4 

+ n
merging

{ otherwise
 

 
 

  

assumes n is a power of 2 
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Proof by Induction 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 

Pf.  (by induction on n) 
  Base case:  n = 1. 
  Inductive hypothesis:  T(n) =  n log2 n. 
  Goal:  show that T(2n) =  2n log2 (2n). 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

assumes n is a power of 2 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
1 2 4 3 4 

+ n
merging

{ otherwise
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Analysis of Mergesort Recurrence 

Claim.  If T(n) satisfies the following recurrence, then T(n)  ≤ n lg n. 

Pf.   (by induction on n) 
  Base case:  n = 1. 
  Define n1 = n / 2 ,  n2 = n / 2. 
  Induction step:  assume true for 1, 2, ... , n–1. 

  

€ 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1   +  n2 lg n2   +  n
≤ n1 lgn2   +  n2 lg n2   +  n
= n lgn2   +  n
≤ n( lgn −1 )  +  n
= n lgn 

  

€ 

n2 = n /2 

≤ 2 lgn  / 2 
= 2 lgn  / 2

⇒ lgn2 ≤ lgn  −1

    

€ 

T(n) ≤

 0 if  n =1
T n /2 ( )
solve left half

1 2 4 3 4 
+ T n /2 ( )

solve right half
1 2 4 3 4 

+ n
merging
{ otherwise

 

 
 

 
 

log2n 


