Introduction to Algorithms

6.046J/18.401J
ALGORITHMS LECTURE 19
Tm Shortest Paths II1
o Ny * All-pairs shortest paths

o Y Q * Matrix-multiplication

N T algorithm

i » Floyd-Warshall algorithm
* Johnson’s algorithm

Prof. Charles E. Leiserson

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.1

\
LR

.~ Shortest paths
Single-source shortest paths
* Nonnegative edge weights
* Dijkstra’s algorithm:@ VlgE
» General
* Bellman-Ford algorithm: O(VE)

* DAG
* One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.2

- " Shortest paths

“\‘

Slngle-source shortest paths
* Nonnegative edge weights

* Dijkstra’s algorithm: O(E + Vg V)
» General

* Bellman-Ford: O(VE)
* DAG

* One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
* Nonnegative edge weights

* Dijkstra’s algorithm | V] times: O(VE + V2 1g 1)
» General

* Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.3

;‘!\;;""f All-pairs shortest paths
Input: Digraph G = (V, £), where I = {1, 2,
..., n}, with edge-weight function w : £ — RR.

Output: n» x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.4

“.1 All-pairs shortest paths

Input: Digraph G = (V, £), where I = {1, 2,
..., n}, with edge-weight function w : £ — RR.
Output: n» x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

IDEA:

 Run Bellman-Ford once from each vertex.

e Time = O(V°E).

* Dense graph (n° edges) = O(n*) time in the
worst case.

Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.5

.1 Dynamic programming

Consider the 7 x n adjacency matrix 4 = (a,)
of the digraph, and define

dl.j(’””) = weight of a shortest path from
[to j that uses at most 7 edges.

Claim: We have
7.(0) {O ifi=,
ij

o 1f 1 #J;
and form=1,2,....n—1,
dl-j(m) — mink{dik(m_l) +ay; }

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.6

ALGORITHMS

”% Proof of claim

<m — 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.7

ALG) ITH'VIS

""'H‘ Proof of claim e

Relaxation!

for k< 1 ton
doifd, > d; +ay
thend (—dk-l-ak] <m— 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.8

Proof of claim

1“‘

Relaxation!
for k< 1 ton

doifd, > d; +ay
then d — dzk +ay; <m— 1 edges

Note: No negative-weight cycles implies
5, j) = d,; "DV =q, "W =g, D= ...

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.9

' Matrix multiplication

“\‘

Compute C=A-B,where C, A, and B are n x n
matrices: ;
k=1

Time = O(7°) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.10

7.1 Matrix multiplication

LR

Compute C' =4 - B, where C, A, and B are n x n
matrices: ;
k=1

Time = O(7°) using the standard algorithm.
What if we map “+” — “min” and *“” — “+7?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.11

ALGORITH

Matrlx multiplication

“\‘

Compute C=A-B,where C, A, and B are n x n
matrices: ;
k=1

Time = O(7°) using the standard algorithm.
What if we map “+” — “min” and *“” — “+7?

c;; =miny {ay + by}

Thus, DU = DU < 4,
0 00 00 o0
Identity matrix =1= | 7, (% | =D = (d,(").

00 00 00 ()
November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.12

m Matrix multiplication
« " (continued)
The (min, +) multiplication 1s associative, and

with the real numbers, 1t forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DW= pO. g4 = 4!
D@ = pW.4 = 42

D) = pn-2) . g — gn-1 |
yielding DU~V = (8(i, j)).
Time = O(n'n’) = O(n*). No better than n x B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.13

w= Improved matrix
«>" multiplication algorithm

Repeated squaring: 42 = 4% x 4%,
Compute A2, A% el
A% A% L .

_/

y .
O(lg n) squarings
Note: A" 1 =4"=4""1 = ...
Time = O(n’lg n).

To detect negative-weight cycles, check the

diagonal for negative values 1n O(n) additional
time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.14

l*\‘[l"! Floyd-Warshall algorithm
Also dynamic programming, but faster!
Define cl-j(k) = weight of a shortest path from i

to ; with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, o(7, /) = ¢; (1. Also, clj(o)— i

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.15

Floy d-Warshall recurrence

“\‘

cj(k) =min; {c; =D e D + ckj-("_l)}

intermediate vertices in {1, 2, ..., k}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.16

e V.

" Warshall

for k< 1 ton
do fori< 1 ton
do forj < 1 ton
do ifcl-j>cik+ckj

relaxation
then Cii <—cyt ij}

m Pseudocode for Floyd-

Notes:

* Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in O(#n°) time.
* Simple to code.
» Efficient in practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.17

m Transitive closure of a

-y

w7 directed graph

1 1f there exists a path from i to /,

Compute i = 0 otherwise.

IDEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):

k) — ¢+ (k1 k—1 k—1
tij() = tij() v/ (tik() A tkj().

Time = O(n°).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.18

' < Graph reweighting

“\‘

Theorem. Given a function /2 : V' — R, reweight each
edge (u, v) € E by w,(u, v) =w(u, v) + h(u) — h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.19

Graph reweighting

Theorem. Given a function /2 : V' — R, reweight each
edge (u, v) € E by w,(u, v) =w(u, v) + h(u) — h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

Proof. Letp=v, > v, —> -+ > v, beapathin G. We
have

k—1
w, (p) = Z Wy (Vi \Vigr)
=1
k—1
= > (w(v; v)+h(v)=h(vi)))
=1

= D)+ ()~ hv,) _ Same

= amount!
w(p)+h(v,)—h(v,).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.20

= Shortest paths in reweighted
T‘ oraphs

Corollary. o,(u, v) = o(u, v) + h(u) — h(v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.21

@ Shortest paths in reweighted
*‘\sﬁ graphs

Corollary. o,(u, v) = o(u, v) + h(u) — h(v).

IDEA: Find a function /2 : V' — IR such that

w,(u, v) = 0 for all (#, v) € E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.

NOTE: w,(u, v) = 0 it h(v) — h(u) < w(u, v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.22

ALG

\ Johnson s algorithm

“\‘ _

1. F1nd a function /2 : ' — R such that w,(«, v) = 0 for

all (1, v) € E by using Bellman-Ford to solve the
difference constraints /(v) — 4(u) < w(u, v), or
determine that a negative-weight cycle exists.

e Time = O(V'E).

2. Run Dijkstra’s algorithm using w, from each vertex

u € V' to compute o,(u, v) forall v e V.
e Time=O(VE+ V?1gV).

3. For each (u, v) € IV x V, compute
o(u, v) = 0,(u, v) — h(u) + h(v) .
* Time = O()?).
Total time = O(VE + V2 1g V).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.23

	Introduction to Algorithms6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

