Introduction to Algorithms 6.046J/18.401J

LECTURE 19 Shortest Paths III

- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson's algorithm

Prof. Charles E. Leiserson

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$

• General

• Three algorithms today.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \to \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2 E)$.
- Dense graph $(n^2 \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* that uses at most *m* edges.

Claim: We have

ALGORITHMS

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, ..., n - 1, \\ d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \}.$

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} \, .$$

Time = $\Theta(n^3)$ using the standard algorithm.

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} \, .$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} \, .$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"? $c_{ii} = \min_k \{a_{ik} + b_{kj}\}.$ Thus, $D^{(m)} = D^{(m-1)}$ "×" *A*. Identity matrix = I = $\begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} = D^0 = (d_{ij}^{(0)}).$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \cdot A = A^{1}$$

$$D^{(2)} = D^{(1)} \cdot A = A^{2}$$

$$\vdots$$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

yielding $D^{(n-1)} = (\delta(i, j)).$

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, \dots, A^{2^{\lceil \lg(n-1) \rceil}}$. $O(\lg n)$ squarings Note: $A^{n-1} = A^n = A^{n+1} = \cdots$. Time = $\Theta(n^3 \lg n)$.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set {1, 2, ..., k}.

Floyd-Warshall recurrence

 $c_{ii}^{(k)} = \min_{k} \{ c_{ii}^{(k-1)}, c_{ik}^{(k-1)} + c_{ki}^{(k-1)} \}$

intermediate vertices in $\{1, 2, ..., k\}$

Pseudocode for Floyd-Warshall

for
$$k \leftarrow 1$$
 to n
do for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do if $c_{ij} > c_{ik} + c_{kj}$
then $c_{ij} \leftarrow c_{ik} + c_{kj}$ relaxation

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\lor, \land) instead of (min, +):

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.

Graph reweighting

Theorem. Given a function $h : V \to \mathbb{R}$, *reweight* each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Graph reweighting

Theorem. Given a function $h : V \to \mathbb{R}$, *reweight* each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

IDEA: Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$. Then, run Dijkstra's algorithm from each vertex on the reweighted graph.

NOTE: $w_h(u, v) \ge 0$ iff $h(v) - h(u) \le w(u, v)$.

Johnson's algorithm

- 1. Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints $h(v) - h(u) \le w(u, v)$, or determine that a negative-weight cycle exists.
 - Time = O(VE).
- 2. Run Dijkstra's algorithm using w_h from each vertex $u \in V$ to compute $\delta_h(u, v)$ for all $v \in V$.
 - Time = $O(VE + V^2 \lg V)$.
- 3. For each $(u, v) \in V \times V$, compute $\delta(u, v) = \delta_h(u, v) - h(u) + h(v)$.
 - Time = $O(V^2)$.

Total time = $O(VE + V^2 \lg V)$.