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Introduction to Algorithms
6.046J/18.401J

LECTURE 19
Shortest Paths III
• All-pairs shortest paths
• Matrix-multiplication 

algorithm
• Floyd-Warshall algorithm
• Johnson’s algorithm

Prof. Charles E. Leiserson
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Shortest paths
Single-source shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm: O(E + V lg V)
• General

! Bellman-Ford algorithm: O(VE)
• DAG

! One pass of Bellman-Ford: O(V + E)
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Shortest paths
Single-source shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm: O(E + V lg V)
• General

! Bellman-Ford: O(VE)
• DAG

! One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)
• General

! Three algorithms today.
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All-pairs shortest paths
Input: Digraph G = (V, E), where V = {1, 2, 
…, n}, with edge-weight function w : E ! R.
Output: n " n matrix of shortest-path lengths 
#(i, j) for all i, j $ V.
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All-pairs shortest paths
Input: Digraph G = (V, E), where V = {1, 2, 
…, n}, with edge-weight function w : E ! R.
Output: n " n matrix of shortest-path lengths 
#(i, j) for all i, j $ V.
IDEA:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph (n2 edges) %&(n 4) time in the 

worst case.
Good first try!
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Dynamic programming
Consider the n " n adjacency matrix A = (aij)
of the digraph, and define

dij
(m) = weight of a shortest path from

i to j that uses at most m edges.
Claim: We have

dij
(0) = 0 if i = j,

' if i ( j;
and for m = 1, 2, …, n – 1,

dij
(m) = mink{dik

(m–1) ) akj }.
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Proof of claim
dij

(m) = mink{dik
(m–1) ) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges
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Proof of claim
dij

(m) = mink{dik
(m–1) ) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges

Relaxation!
for k + 1 to n

do if dij > dik + akj
then dij + dik + akj
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Proof of claim
dij

(m) = mink{dik
(m–1) ) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges

Relaxation!
for k + 1 to n

do if dij > dik + akj
then dij + dik + akj

Note: No negative-weight cycles implies
#(i, j) = dij 

(n–1) = dij 
(n) = dij 

(n+1) = "
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Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.
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Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.
What if we map “+” ! “min” and “·” ! “+”? 
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Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.
What if we map “+” ! “min” and “·” ! “+”? 

cij = mink {aik + bkj}.
Thus, D(m) = D(m–1) “"” A.

Identity matrix = I =
.
.
.

/

0

1
1
1

2

3

'''
'''
'''
'''

0
0

0
0

= D0 = (dij
(0)).
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Matrix multiplication 
(continued)

The (min, +) multiplication is associative, and 
with the real numbers, it forms an algebraic 
structure called a closed semiring.
Consequently, we can compute

D(1) = D(0) · A = A1

D(2) = D(1) · A = A2

! !
D(n–1) = D(n–2) · A = An–1 ,

yielding D(n–1) = (#(i, j)).
Time = &(n·n3) = &(n4).  No better than n " B-F.
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Improved matrix 
multiplication algorithm

Repeated squaring: A2k = Ak × Ak.
Compute A2, A4, …, A45lg(n–1)6 .

O(lg n) squarings
Note: An–1 = An = An+1 = ".
Time = &(n3 lg n).

To detect negative-weight cycles, check the 
diagonal for negative values in O(n) additional 
time.
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Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define cij
(k) = weight of a shortest path from i

to j with intermediate vertices 
belonging to the set {1, 2, …, k}.

ii * k* k * k* k * k* k * k* k jj

Thus, #(i, j) = cij
(n).  Also, cij

(0) = aij .



November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.16

Floyd-Warshall recurrence
cij

(k) = mink {cij
(k–1), cik

(k–1) + ckj
(k–1)}

ii jj

k

i
cij

(k–1)

cik
(k–1) ckj

(k–1)

intermediate vertices in {1, 2, …, k}
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Pseudocode for Floyd-
Warshall

for k + 1 to n
do for i + 1 to n

do for j + 1 to n
do if cij > cik + ckj

then cij + cik + ckj
relaxation

Notes:
• Okay to omit superscripts, since extra relaxations 

can’t hurt.
• Runs in &(n3) time.
• Simple to code.
• Efficient in practice.
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Transitive closure of a 
directed graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (7, 8) instead 
of (min, +):

tij(k) = tij(k–1) 7 (tik(k–1) 8 tkj
(k–1)).

Time = &(n3).
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Graph reweighting
Theorem.  Given a function h : V ! R, reweight each 
edge (u, v) $ E by wh(u, v) = w(u, v) + h(u) – h(v).  
Then, for any two vertices, all paths between them are 
reweighted by the same amount.
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Graph reweighting
Theorem.  Given a function h : V ! R, reweight each 
edge (u, v) $ E by wh(u, v) = w(u, v) + h(u) – h(v).  
Then, for any two vertices, all paths between them are 
reweighted by the same amount.
Proof.  Let p = v1 ! v2 !"! vk be a path in G.  We 
have 
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amount!
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Shortest paths in reweighted
graphs

Corollary.  #h(u, v) = #(u, v) + h(u) – h(v).
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Shortest paths in reweighted
graphs

Corollary.  #h(u, v) = #(u, v) + h(u) – h(v).

IDEA:  Find a function h : V ! R such that 
wh(u, v) < 0 for all (u, v) $ E.  Then, run 
Dijkstra’s algorithm from each vertex on the 
reweighted graph. 
NOTE: wh(u, v) < 0 iff h(v) – h(u) * w(u, v).
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Johnson’s algorithm
1. Find a function h : V ! R such that wh(u, v) < 0 for 

all (u, v) $ E by using Bellman-Ford to solve the 
difference constraints h(v) – h(u) * w(u, v), or 
determine that a negative-weight cycle exists.
• Time = O(VE).

2. Run Dijkstra’s algorithm using wh from each vertex 
u $ V to compute #h(u, v) for all v $ V.
• Time = O(VE + V 2 lg V).

3. For each (u, v) $ V " V, compute
#(u, v) =  #h(u, v) – h(u) + h(v) .

• Time = O(V 2).
Total time = O(VE + V 2 lg V).
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