
November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.1

Introduction to Algorithms
6.046J/18.401J

LECTURE 19
Shortest Paths III
• All-pairs shortest paths
• Matrix-multiplication

algorithm
• Floyd-Warshall algorithm
• Johnson’s algorithm

Prof. Charles E. Leiserson

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.2

Shortest paths
Single-source shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm: O(E + V lg V)
• General

! Bellman-Ford algorithm: O(VE)
• DAG

! One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.3

Shortest paths
Single-source shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm: O(E + V lg V)
• General

! Bellman-Ford: O(VE)
• DAG

! One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
• Nonnegative edge weights

! Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)
• General

! Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.4

All-pairs shortest paths
Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ! R.
Output: n " n matrix of shortest-path lengths
#(i, j) for all i, j $ V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.5

All-pairs shortest paths
Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ! R.
Output: n " n matrix of shortest-path lengths
#(i, j) for all i, j $ V.
IDEA:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph (n2 edges) %&(n 4) time in the

worst case.
Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.6

Dynamic programming
Consider the n " n adjacency matrix A = (aij)
of the digraph, and define

dij
(m) = weight of a shortest path from

i to j that uses at most m edges.
Claim: We have

dij
(0) = 0 if i = j,

' if i (j;
and for m = 1, 2, …, n – 1,

dij
(m) = mink{dik

(m–1)) akj }.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.7

Proof of claim
dij

(m) = mink{dik
(m–1)) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.8

Proof of claim
dij

(m) = mink{dik
(m–1)) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges

Relaxation!
for k + 1 to n

do if dij > dik + akj
then dij + dik + akj

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.9

Proof of claim
dij

(m) = mink{dik
(m–1)) akj }

ii jji
!

k’s

* m – 1 edges

* m – 1 edges

* m – 1 edges

* m – 1 edges

Relaxation!
for k + 1 to n

do if dij > dik + akj
then dij + dik + akj

Note: No negative-weight cycles implies
#(i, j) = dij

(n–1) = dij
(n) = dij

(n+1) = "

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.10

Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.11

Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.
What if we map “+” ! “min” and “·” ! “+”?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.12

Matrix multiplication
Compute C = A · B, where C, A, and B are n " n
matrices:

,
-

-
n

k
kjikij bac

1
.

Time = &(n3) using the standard algorithm.
What if we map “+” ! “min” and “·” ! “+”?

cij = mink {aik + bkj}.
Thus, D(m) = D(m–1) “"” A.

Identity matrix = I =
.
.
.

/

0

1
1
1

2

3

'''
'''
'''
'''

0
0

0
0

= D0 = (dij
(0)).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.13

Matrix multiplication
(continued)

The (min, +) multiplication is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.
Consequently, we can compute

D(1) = D(0) · A = A1

D(2) = D(1) · A = A2

! !
D(n–1) = D(n–2) · A = An–1 ,

yielding D(n–1) = (#(i, j)).
Time = &(n·n3) = &(n4). No better than n " B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.14

Improved matrix
multiplication algorithm

Repeated squaring: A2k = Ak × Ak.
Compute A2, A4, …, A45lg(n–1)6 .

O(lg n) squarings
Note: An–1 = An = An+1 = ".
Time = &(n3 lg n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.15

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define cij
(k) = weight of a shortest path from i

to j with intermediate vertices
belonging to the set {1, 2, …, k}.

ii * k* k * k* k * k* k * k* k jj

Thus, #(i, j) = cij
(n). Also, cij

(0) = aij .

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.16

Floyd-Warshall recurrence
cij

(k) = mink {cij
(k–1), cik

(k–1) + ckj
(k–1)}

ii jj

k

i
cij

(k–1)

cik
(k–1) ckj

(k–1)

intermediate vertices in {1, 2, …, k}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.17

Pseudocode for Floyd-
Warshall

for k + 1 to n
do for i + 1 to n

do for j + 1 to n
do if cij > cik + ckj

then cij + cik + ckj
relaxation

Notes:
• Okay to omit superscripts, since extra relaxations

can’t hurt.
• Runs in &(n3) time.
• Simple to code.
• Efficient in practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.18

Transitive closure of a
directed graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (7, 8) instead
of (min, +):

tij(k) = tij(k–1) 7 (tik(k–1) 8 tkj
(k–1)).

Time = &(n3).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.19

Graph reweighting
Theorem. Given a function h : V ! R, reweight each
edge (u, v) $ E by wh(u, v) = w(u, v) + h(u) – h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.20

Graph reweighting
Theorem. Given a function h : V ! R, reweight each
edge (u, v) $ E by wh(u, v) = w(u, v) + h(u) – h(v).
Then, for any two vertices, all paths between them are
reweighted by the same amount.
Proof. Let p = v1 ! v2 !"! vk be a path in G. We
have

9 :

)()()(

)()(),(

)()(),(

),()(

1

1

1

1
1

1

1
11

1

1
1

k

k

k

i
ii

k

i
iiii

k

i
iihh

vhvhpw

vhvhvvw

vhvhvvw

vvwpw

;)-

;)-

;)-

-

,

,

,

;

-
)

;

-
))

;

-
)

.

Same
amount!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.21

Shortest paths in reweighted
graphs

Corollary. #h(u, v) = #(u, v) + h(u) – h(v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.22

Shortest paths in reweighted
graphs

Corollary. #h(u, v) = #(u, v) + h(u) – h(v).

IDEA: Find a function h : V ! R such that
wh(u, v) < 0 for all (u, v) $ E. Then, run
Dijkstra’s algorithm from each vertex on the
reweighted graph.
NOTE: wh(u, v) < 0 iff h(v) – h(u) * w(u, v).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.23

Johnson’s algorithm
1. Find a function h : V ! R such that wh(u, v) < 0 for

all (u, v) $ E by using Bellman-Ford to solve the
difference constraints h(v) – h(u) * w(u, v), or
determine that a negative-weight cycle exists.
• Time = O(VE).

2. Run Dijkstra’s algorithm using wh from each vertex
u $ V to compute #h(u, v) for all v $ V.
• Time = O(VE + V 2 lg V).

3. For each (u, v) $ V " V, compute
#(u, v) = #h(u, v) – h(u) + h(v) .

• Time = O(V 2).
Total time = O(VE + V 2 lg V).

	Introduction to Algorithms6.046J/18.401J
	Shortest paths
	Shortest paths
	All-pairs shortest paths
	All-pairs shortest paths
	Dynamic programming
	Proof of claim
	Proof of claim
	Proof of claim
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication
	Matrix multiplication (continued)
	Improved matrix multiplication algorithm
	Floyd-Warshall algorithm
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall
	Transitive closure of a directed graph
	Graph reweighting
	Graph reweighting
	Shortest paths in reweighted graphs
	Shortest paths in reweighted graphs
	Johnson’s algorithm

