Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two or more sub
-problems, solve each sub-problem independently, and combine solution
to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
« Secretary of Defense was hostile to mathematical research.
« Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.
. Bioinformatics.
Control theory.
Information theory.
Operations research.
Computer science: theory, graphics, AT, systems, ...

Some famous dynamic programming algorithms.
. Viterbi for hidden Markov models.
Unix diff for comparing two files.
Smith-Waterman for sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value Vi -
= Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time.
« Add job to subseft if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

» Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

> Tlme

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

« Case 1: OPT selects job j.
- can't use incompatible jobs { p(j) +1,p(j)+ 2, ... j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N

optimal substructure

/
« Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if j=0
OPT(j)=
(/) {max{ v+ OPT(p())), OPT(j—l)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

1

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
heeded.

Input: n, s;,.,s, £,,.,£ v,.,v,
Sort jobs by finish times so that £, < £, < ... = £ .
Compute p(1), p(2), .., p(n)
for =1 ton
M[j] = empty <« globalarray
M[j] =0

M-Compute-Opt (j) ({
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[]j]

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
« Sort by finish time: O(n log n).
Computing p(-): O(n) after sorting by start time.

. M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (ii) fills in one new entry M1 and makes two recursive calls

Progress measure ® = # nonempty entries of m[].
- initially ® = 0, throughout ® < n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-0Opt (n) is O(n). =

13

Automated Memoization

Automated memoization. Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

(defun F (n)
(if
(<= n 1)
n
(+ (F (-n 1)) (F (-n 2)))))

Lisp (efficient)

static int F(int n) {
if (n <= 1) return n;
else return F(n-1) + F(n-2);

Java (exponential)

N S
F(38) F(37) F(37) F(36)
7\ 7\ 7 \ 7\
F(37) F(36) F(36) F(35) F(36) F(35) F(35) F(34)
/N /N /\N /N /N /\ /\ /N

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution(j) {
if (3 = 0)
output nothing
else if (v; + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

= # of recursive calls =n = O(n).

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

16

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
» Foundational problem in statistic and numerical analysis.
« Given n points in the plane: (xq, y1), (X2,Y5), (X, Yn)-
. Find aliney = ax + b that minimizes the sum of the squared error:

SSE = i(yi—axi—b)2

i=l1

Solution. Calculus = min error is achieved when

a=nEiXiyi —(E,-x,-)(E,-y,-) b=2iy,- —azixi
L Eixi2 - (Eixi)z , n

18

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (x4, y1), (X2, ¥5) , ..., (X, Yn) With
= X{< X5< ... < X,, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

: - I
par}SImonY' goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (x4, y1), (X2, ¥5) , ..., (X, Yn) With
= X1< X5< .. <Xy, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
« Tradeoff (penalty) function: E + c L, for some constant c > 0.

20

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, pi1 , - - ., Pj-
- e(i,j) =minimum sum of squares for points p;, pi.1 , ..., p;.

To compute OPT(j):
- Last segment uses points p;, pi.q, p; for some i.
« Cost =e(i, j) + c+ OPT(i-1).

0 if =0
min { e(i,j) +c+ OPT(i-1)} otherwise

I<si<j

OPT(})~

21

Segmented Least Squares: Algorithm

INPUT: n, pP;,../Py B C

Segmented-Least-Squares () {
M[0] = O
for =1 ton
for i =1 to j
compute the least square error e;; for

the segment p,,.., p;

min,; _; .5 (e;5 + ¢ + M[i-1])

return M[n]

. . can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

22

