
2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
 local criterion.

Divide-and-conquer. Break up a problem into two or more sub
-problems, solve each sub-problem independently, and combine solution
 to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
 sub-problems, and build up solutions to larger and larger sub-problems.

3

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
 the 1950s.

Etymology.
  Dynamic programming = planning over time.
  Secretary of Defense was hostile to mathematical research.
  Bellman sought an impressive name to avoid confrontation.

–  "it's impossible to use dynamic in a pejorative sense"
–  "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

4

Dynamic Programming Applications

Areas.
  Bioinformatics.
  Control theory.
  Information theory.
  Operations research.
  Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.
  Viterbi for hidden Markov models.
  Unix diff for comparing two files.
  Smith-Waterman for sequence alignment.
  Bellman-Ford for shortest path routing in networks.
  Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
  Job j starts at sj, finishes at fj, and has weight or value vj .
  Two jobs compatible if they don't overlap.
  Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time.
  Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
 weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
 of job requests 1, 2, ..., j.

  Case 1: OPT selects job j.
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of remaining

 compatible jobs 1, 2, ..., p(j)

  Case 2: OPT does not select job j.
–  must include optimal solution to problem consisting of remaining

 compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
 redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
 like Fibonacci sequence.

3

4
5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1

1 1

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[j] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
 needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
  Sort by finish time: O(n log n).
  Computing p(⋅) : O(n) after sorting by start time.

  M-Compute-Opt(j): each invocation takes O(1) time and either
–  (i) returns an existing value M[j]
–  (ii) fills in one new entry M[j] and makes two recursive calls

  Progress measure Φ = # nonempty entries of M[].
–  initially Φ = 0, throughout Φ ≤ n.
–  (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

  Overall running time of M-Compute-Opt(n) is O(n). ▪

14

Automated Memoization

Automated memoization. Many functional programming languages
(e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

F(40)

F(39) F(38)

F(38)

F(37) F(36)

F(37)

F(36) F(35)

F(36)

F(35) F(34)

F(37)

F(36) F(35)

static int F(int n) {
 if (n <= 1) return n;
 else return F(n-1) + F(n-2);
}

(defun F (n)
 (if
 (<= n 1)
 n
 (+ (F (- n 1)) (F (- n 2)))))

Lisp (efficient)
Java (exponential)

15

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
 we want the solution itself?
A. Do some post-processing.

  # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

16

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

6.3 Segmented Least Squares

18

Segmented Least Squares

Least squares.
  Foundational problem in statistic and numerical analysis.
  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).
  Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus ⇒ min error is achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

19

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
 parsimony?

x

y

goodness of fit

number of lines

20

Segmented Least Squares

Segmented least squares.
  Points lie roughly on a sequence of several line segments.
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
  x1 < x2 < ... < xn, find a sequence of lines that minimizes:

–  the sum of the sums of the squared errors E in each segment
–  the number of lines L

  Tradeoff (penalty) function: E + c L, for some constant c > 0.

x

y

21

Dynamic Programming: Multiway Choice

Notation.
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
  e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
  Last segment uses points pi, pi+1 , . . . , pj for some i.
  Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise

22

Segmented Least Squares: Algorithm

Running time. O(n3).
  Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

 previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
 M[0] = 0
 for j = 1 to n
 for i = 1 to j
 compute the least square error eij for
 the segment pi,…, pj

 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1])

 return M[n]
}

can be improved to O(n2) by pre-computing various statistics

