# 11.4 The Pricing Method: Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.



weight = 2 + 2 + 4

weight = 9

Pricing method. Each edge must be covered by some vertex i. Edge e pays price  $p_e \ge 0$  to use vertex i.

**Fairness**. Edges incident to vertex i should pay  $\leq w_i$  in total.



Claim. For any vertex cover S and any fair prices  $p_e$ :  $\sum_e p_e \le w(S)$ . Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by sum fairness inequalities at least one node in S for each node in S

# Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

# Pricing Method





## Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S\* be optimal vertex cover. We show  $w(S) \leq 2w(S^*)$ .

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$
all nodes in S are tight  $S \subseteq V$ , each edge counted twice fairness lemma prices  $\geq 0$ 

# 11.6 LP Rounding: Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.



# Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights  $w_i \ge 0$ , find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

#### Integer programming formulation.

• Model inclusion of each vertex i using a 0/1 variable  $x_i$ .

 $x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$ 

Vertex covers in 1-1 correspondence with 0/1 assignments:  $S = \{i \in V : x_i = 1\}$ 

- Objective function: maximize  $\Sigma_i w_i x_i$ .
- Must take either i or j:  $x_i + x_j \ge 1$ .

## Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(*ILP*) min 
$$\sum_{i \in V} w_i x_i$$
  
s.t.  $x_i + x_j \ge 1$   $(i,j) \in E$   
 $x_i \in \{0,1\}$   $i \in V$ 

Observation. If x\* is optimal solution to (ILP), then S = { $i \in V : x_i^* = 1$ } is a min weight vertex cover.

# Integer Programming

INTEGER-PROGRAMMING. Given integers  $a_{ij}$  and  $b_i$ , find integers  $x_j$  that satisfy:

| $\max c^{t}x$   | $\sum_{i=1}^{n} a_{ij} x_j$ | ≥ | $b_i$    | $1 \le i \le m$ |
|-----------------|-----------------------------|---|----------|-----------------|
| s.t. $Ax \ge b$ | $J=1$ $X_j$                 | ≥ | 0        | $1 \le j \le n$ |
| x integral      | $x_{j}$                     |   | integral | $1 \le j \le n$ |

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality

# Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers  $c_j$ ,  $b_i$ ,  $a_{ij}$ .
- Output: real numbers x<sub>j</sub>.

(P) max  $c^{t}x$ s.t.  $Ax \ge b$   $x \ge 0$ (P) max  $\sum_{j=1}^{n} c_{j}x_{j}$ s.t.  $\sum_{j=1}^{n} a_{ij}x_{j} \ge b_{i}$   $1 \le i \le m$  $x_{j} \ge 0$   $1 \le j \le n$ 

Linear. No  $x^2$ , xy,  $\arccos(x)$ , x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

# LP Feasible Region

LP geometry in 2D.



## Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

$$(LP) \min \sum_{i \in V} w_i x_i$$
  
s.t.  $x_i + x_j \ge 1$   $(i,j) \in E$   
 $x_i \ge 0$   $i \in V$ 

Observation. Optimal value of (LP) is  $\leq$  optimal value of (ILP). Pf. LP has fewer constraints.



Theorem. If x\* is optimal solution to (LP), then S = { $i \in V : x_i^* \ge \frac{1}{2}$ } is a vertex cover whose weight is at most twice the min possible weight.

#### Pf. [S is a vertex cover]

- Consider an edge (i, j)  $\in$  E.
- Since  $x_i^* + x_j^* \ge 1$ , either  $x_i^* \ge \frac{1}{2}$  or  $x_j^* \ge \frac{1}{2} \implies (i, j)$  covered.

#### Pf. [S has desired cost]

Let S\* be optimal vertex cover. Then

$$\sum_{i \in S^{*}} W_{i} \geq \sum_{i \in S} W_{i} x_{i}^{*} \geq \frac{1}{2} \sum_{i \in S} W_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow$$
LP is a relaxation  $x^{*}_{i} \geq \frac{1}{2}$ 

Theorem. 2-approximation algorithm for weighted vertex cover.

```
Theorem. [Dinur-Safra 2001] If P \neq NP, then no \rho-approximation
for \rho < 1.3607, even with unit weights.
```

Open research problem. Close the gap.