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Breadth First Search 

BFS intuition.  Explore outward from s in all possible directions, adding
 nodes one "layer" at a time. 

BFS algorithm. 
  L0 = { s }. 
  L1 = all neighbors of L0. 
  L2 = all nodes that do not belong to L0 or L1, and that have an edge

 to a node in L1. 
  Li+1 = all nodes that do not belong to an earlier layer, and that have

 an edge to a node in Li. 

Theorem.  For each i, Li consists of all nodes at distance exactly i 
from s.  There is a path from s to t iff t appears in some layer. 

s L1 L2 L n-1 
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Breadth First Search 

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
 G. Then the level of x and y differ by at most 1. 

L0 

L1 

L2 

L3 
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Breadth First Search:  Analysis 

Theorem.  The above implementation of BFS runs in O(m + n) time if
 the graph is given by its adjacency list representation. 

Pf. 
  Easy to prove O(n2) running time: 

–  at most n lists L[i] 
–  each node occurs on at most one list; for loop executed ≤ n times 
–  when we consider node u, there are ≤ n incident edges (u, v), 

and we spend O(1) processing each edge 

  Actually runs in O(m + n) time: 
–  when we consider node u, there are deg(u) incident edges (u, v) 
–  total time processing edges is Σu∈V deg(u) = 2m     ▪ 

each edge (u, v) is counted exactly twice 
in sum: once in deg(u) and once in deg(v) 
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Connected Component 

Connected component.  Find all nodes reachable from s. 

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }. 
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Flood Fill 

Flood fill.  Given lime green pixel in an image, change color of entire
 blob of neighboring lime pixels to blue. 
  Node:  pixel. 
  Edge:  two neighboring lime pixels. 
  Blob:  connected component of lime pixels. 

recolor lime green blob to blue 
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Flood Fill 
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Connected Component 

Connected component.  Find all nodes reachable from s. 

Theorem.  Upon termination, R is the connected component containing s. 
  BFS = explore in order of distance from s. 
  DFS = explore in a different way. 

s 

u v 

R 

it's safe to add v 



3.4  Testing Bipartiteness 
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Bipartite Graphs 

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be
 colored red or blue such that every edge has one red and one blue end. 

Applications. 
  Stable marriage:  men = red, women = blue. 
  Scheduling:  machines = red, jobs = blue. 

a bipartite graph 
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Testing Bipartiteness 

Testing bipartiteness.   Given a graph G, is it bipartite? 
  Many graph problems become: 

–  easier if the underlying graph is bipartite (matching) 
–  tractable if the underlying graph is bipartite (independent set) 

  Before attempting to design an algorithm, we need to understand
 structure of bipartite graphs. 

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G another drawing of G 
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An Obstruction to Bipartiteness 

Lemma.  If a graph G is bipartite, it cannot contain an odd length cycle. 

Pf.  Not possible to 2-color the odd cycle, let alone G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
 produced by BFS starting at node s.  Exactly one of the following
 holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
 produced by BFS starting at node s.  Exactly one of the following
 holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Pf.  (i) 
  Suppose no edge joins two nodes in the same layer. 
  By previous lemma, this implies all edges join nodes on same level. 
  Bipartition:  red = nodes on odd levels, blue = nodes on even levels. 

Case (i) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
 produced by BFS starting at node s.  Exactly one of the following
 holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Pf.  (ii) 
  Suppose (x, y) is an edge with x, y in same level Lj. 
  Let z = lca(x, y) = lowest common ancestor. 
  Let Li be level containing z. 
  Consider cycle that takes edge from x to y, 

then path from y to z, then path from z to x. 

  Its length is  1  +   (j-i)  +  (j-i),  which is odd.  ▪ 

z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 
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Obstruction to Bipartiteness 

Corollary.  A graph G is bipartite iff it contain no odd length cycle. 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 


