
45

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
  Compute OPT(i, •) from OPT(i-1, •).
  No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
 O(mn) time.
  Clever combination of divide-and-conquer and dynamic programming.
  Inspired by idea of Savitch from complexity theory.

46

Edit distance graph.
  Let f(i, j) be shortest path from (0,0) to (i, j).
  Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

€

αxi y j

47

Edit distance graph.
  Let f(i, j) be shortest path from (0,0) to (i, j).
  Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

48

Edit distance graph.
  Let g(i, j) be shortest path from (i, j) to (m, n).
  Can compute by reversing the edge orientations and inverting the

 roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

€

αxi y j

49

Edit distance graph.
  Let g(i, j) be shortest path from (i, j) to (m, n).
  Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

50

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

51

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
 Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

n / 2

q

52

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
  Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

i-j x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

q

n / 2

m-n

53

Theorem. Let T(m, n) = max running time of algorithm on strings of
 length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size
(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

€

T (m, n) ≤ 2T (m, n /2) + O(mn) ⇒ T (m, n) = O(mn logn)

54

Theorem. Let T(m, n) = max running time of algorithm on strings of
 length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
  O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
  T(q, n/2) + T(m - q, n/2) time for two recursive calls.
  Choose constant c so that:

  Base cases: m = 2 or n = 2.
  Inductive hypothesis: T(m, n) ≤ 2cmn.

Sequence Alignment: Running Time Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=

+−+=

+−+≤

+−+≤

€

T(m, 2) ≤ cm
T(2, n) ≤ cn
T(m, n) ≤ cmn + T(q, n /2) + T(m− q, n /2)

