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Sequence Alignment:  Linear Space 

Q.  Can we avoid using quadratic space? 

Easy.  Optimal value in O(m + n) space and O(mn) time. 
  Compute OPT(i, •) from OPT(i-1, •). 
  No longer a simple way to recover alignment itself. 

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and
 O(mn) time. 
  Clever combination of divide-and-conquer and dynamic programming. 
  Inspired by idea of Savitch from complexity theory. 
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Edit distance graph. 
  Let f(i, j) be shortest path from (0,0) to (i, j). 
  Observation:  f(i, j) = OPT(i, j). 

Sequence Alignment:  Linear Space 
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Edit distance graph. 
  Let f(i, j) be shortest path from (0,0) to (i, j). 
  Can compute f (•, j) for any j in O(mn) time and O(m + n) space. 

Sequence Alignment:  Linear Space 
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Edit distance graph. 
  Let g(i, j) be shortest path from (i, j) to (m, n). 
  Can compute by reversing the edge orientations and inverting the

 roles of (0, 0) and (m, n) 

Sequence Alignment:  Linear Space 
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Edit distance graph. 
  Let g(i, j) be shortest path from (i, j) to (m, n). 
  Can compute g(•, j) for any j in O(mn) time and O(m + n) space. 

Sequence Alignment:  Linear Space 
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Observation 1.  The cost of the shortest path that uses (i, j) is 
f(i, j) + g(i, j).  

Sequence Alignment:  Linear Space 
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2).
 Then, the shortest path from (0, 0) to (m, n) uses (q, n/2). 

Sequence Alignment:  Linear Space 
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Sequence Alignment:  Linear Space 

Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP. 
  Align xq and yn/2. 

Conquer:  recursively compute optimal alignment in each piece. 

i-j x1 

x2 

y1 

x3 

y2 y3 y4 y5 y6 

ε 

ε 

0-0 

q 

n / 2 

m-n 



53 

Theorem.  Let T(m, n) = max running time of algorithm on strings of
 length at most m and n. T(m, n) = O(mn log n). 

Remark.  Analysis is not tight because two sub-problems are of size 
(q, n/2) and (m - q, n/2).  In next slide, we save log n factor. 

Sequence Alignment:  Running Time Analysis Warmup 
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T (m, n)  ≤  2T (m, n /2)  +  O(mn)   ⇒   T (m, n)  =  O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of
 length m and n. T(m, n) = O(mn). 

Pf.  (by induction on n) 
  O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q. 
  T(q, n/2) + T(m - q, n/2) time for two recursive calls.  
  Choose constant c so that: 

  Base cases: m = 2 or n = 2.  
  Inductive hypothesis:  T(m, n) ≤  2cmn. 

Sequence Alignment:  Running Time Analysis 
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T(m, 2) ≤ cm
T(2, n) ≤ cn
T(m, n) ≤ cmn + T(q, n /2) + T(m− q, n /2)


