
45

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
  Compute OPT(i, •) from OPT(i-1, •).
  No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
 O(mn) time.
  Clever combination of divide-and-conquer and dynamic programming.
  Inspired by idea of Savitch from complexity theory.

46

Edit distance graph.
  Let f(i, j) be shortest path from (0,0) to (i, j).
  Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

€

αxi y j

47

Edit distance graph.
  Let f(i, j) be shortest path from (0,0) to (i, j).
  Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

48

Edit distance graph.
  Let g(i, j) be shortest path from (i, j) to (m, n).
  Can compute by reversing the edge orientations and inverting the

 roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

€

αxi y j

49

Edit distance graph.
  Let g(i, j) be shortest path from (i, j) to (m, n).
  Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

j

50

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

51

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
 Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

n / 2

q

52

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
  Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

i-j x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

q

n / 2

m-n

53

Theorem. Let T(m, n) = max running time of algorithm on strings of
 length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size
(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

€

T (m, n) ≤ 2T (m, n /2) + O(mn) ⇒ T (m, n) = O(mn logn)

54

Theorem. Let T(m, n) = max running time of algorithm on strings of
 length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
  O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
  T(q, n/2) + T(m - q, n/2) time for two recursive calls.
  Choose constant c so that:

  Base cases: m = 2 or n = 2.
  Inductive hypothesis: T(m, n) ≤ 2cmn.

Sequence Alignment: Running Time Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=

+−+=

+−+≤

+−+≤

€

T(m, 2) ≤ cm
T(2, n) ≤ cn
T(m, n) ≤ cmn + T(q, n /2) + T(m− q, n /2)

