4.4 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination t.
- Length \mathbb{W}_e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path

Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path. Pf. (by induction on |S|)

S

S

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

$$\begin{array}{c} \fbox{(P)} \geq \fbox{(P')} + \fbox{(x,y)} \geq d(x) + \fbox{(x,y)} \geq \pi(y) \geq \pi(v) \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ nonnegative \\ weights & inductive \\ hypothesis & defn of \pi(y) & Dijkstra chose v \\ instead of y & instead of y \end{array}$$

Ρ

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge e = (v, w), update

 $\pi(w) = \min \{ \pi(w), \pi(v) + \ell_{\rho} \}.$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

|--|

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap [†]
Insert	n	n	log n	d log _d n	1
ExtractMin	n	n	log n	d log _d n	log n
ChangeKey	m	1	log n	log _d n	1
IsEmpty	n	1	1	1	1
Total		n²	m log n	m log _{m/n} n	m + n log n

† Individual ops are amortized bounds