
13

Music site tries to match your song preferences with others.
  You rank n songs.
  Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
  My rank: 1, 2, …, n.
  Your rank: a1, a2, …, an.
  Songs i and j inverted if i < j, but ai > aj.

Brute force: check all Θ(n2) pairs i and j.

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

14

Applications

Applications.
  Voting theory.
  Collaborative filtering.
  Measuring the "sortedness" of an array.
  Sensitivity analysis of Google's ranking function.
  Rank aggregation for meta-searching on the Web.
  Nonparametric statistics (e.g., Kendall's Tau distance).

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 2 1 5 12 11 3 7 6 9

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
  Divide: separate list into two pieces.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

Divide: O(1).

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
  Divide: separate list into two pieces.
  Conquer: recursively count inversions in each half.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

18

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
  Divide: separate list into two pieces.
  Conquer: recursively count inversions in each half.
  Combine: count inversions where ai and aj are in different halves,

 and return sum of three quantities.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ??? 9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

19

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
  Assume each half is sorted.
  Count inversions where ai and aj are in different halves.
  Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

€

T(n) ≤ T n /2 () + T n /2 () + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

20

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (rA, A) ← Sort-and-Count(A)
 (rB, B) ← Sort-and-Count(B)
 (rB, L) ← Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L
}

Merge-and-Count Algorithm

21

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

