
8.3 Definition of NP

3

Decision Problems

Decision problem.
  X is a set of strings.
  Instance: string s.
  Algorithm A solves problem X: A(s) = yes iff s ∈ X.

Polynomial time. Algorithm A runs in poly-time if for every string s,
 A(s) terminates in at most p(|s|) "steps", where p(⋅) is some polynomial.

PRIMES: X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, …. }
Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s|) = |s|8.

length of s

4

Definition of P

P. Decision problems for which there is a poly-time algorithm.

Problem Description Algorithm Yes No

MULTIPLE Is x a multiple of y? Grade school
 division 51, 17 51, 16

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51

PRIMES Is x prime? AKS (2002) 53 51

EDIT
-DISTANCE

Is the edit distance between
 x and y less than 5?

Dynamic
 programming

niether
 neither

acgggt
 ttttta

LSOLVE Is there a vector x that
 satisfies Ax = b?

Gauss-Edmonds
 elimination

€

0 1 1
2 4 −2
0 3 15

















 ,
4
2

36

















€

1 0 0
1 1 1
0 1 1

















 ,
1
1
1

















5

NP

Certification algorithm intuition.
  Certifier views things from "managerial" viewpoint.
  Certifier doesn't determine whether s ∈ X on its own;

rather, it checks a proposed proof t that s ∈ X.

Def. Algorithm C(s, t) is a certifier for problem X if for every string s,
 s ∈ X iff there exists a string t such that C(s, t) = yes.

NP. Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.

C(s, t) is a poly-time algorithm and
|t| ≤ p(|s|) for some polynomial p(⋅).

"certificate" or "witness"

6

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate
 exists iff s is composite. Moreover |t| ≤ |s|.

Certifier.

Instance. s = 437,669.
Certificate. t = 541 or 809.

Conclusion. COMPOSITES is in NP.

437,669 = 541 × 809

boolean C(s, t) {
 if (t ≤ 1 or t ≥ s)
 return false
 else if (s is a multiple of t)
 return true
 else
 return false
}

7

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

Conclusion. SAT is in NP.

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

€

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

8

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
 simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly
 once, and that there is an edge between each pair of adjacent nodes in
 the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

9

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.
  By definition, there exists a poly-time algorithm A(s) that solves X.
  Certificate: t = ε, certifier C(s, t) = A(s). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.
  By definition, there exists a poly-time certifier C(s, t) for X.
  To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
  Return yes, if C(s, t) returns yes for any of these. ▪

10

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
  Is the decision problem as easy as the certification problem?
  Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP? Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)

11

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

12

Futurama: P = NP?

Copyright © 2000, Twentieth Century Fox

13

Looking for a Job?

Some writers for the Simpsons and Futurama.
  J. Steward Burns. M.S. in mathematics, Berkeley, 1993.
  David X. Cohen. M.S. in computer science, Berkeley, 1992.
  Al Jean. B.S. in mathematics, Harvard, 1981.
  Ken Keeler. Ph.D. in applied mathematics, Harvard, 1990.
  Jeff Westbrook. Ph.D. in computer science, Princeton, 1989.

8.4 NP-Completeness

15

Polynomial Transformation

Def. Problem X polynomial reduces (Cook) to problem Y if arbitrary
 instances of problem X can be solved using:
  Polynomial number of standard computational steps, plus
  Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial transforms (Karp) to problem Y if given any
 input x to X, we can construct an input y such that x is a yes instance
 of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one
 call to oracle for Y, exactly at the end of the algorithm for X. Almost
 all previous reductions were of this form.

Open question. Are these two concepts the same?

we require |y| to be of size polynomial in |x|

we abuse notation ≤ p and blur distinction

16

NP-Complete

NP-complete. A problem Y in NP with the property that for every
 problem X in NP, X ≤ p Y.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in
 poly-time iff P = NP.
Pf. ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
Pf. ⇒ Suppose Y can be solved in poly-time.
  Let X be any problem in NP. Since X ≤ p Y, we can solve X in

poly-time. This implies NP ⊆ P.
  We already know P ⊆ NP. Thus P = NP. ▪

Fundamental question. Do there exist "natural" NP-complete problems?

17

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

inputs hard-coded inputs

yes: 1 0 1

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT
 gates, is there a way to set the circuit inputs so that the output is 1?

18

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf. (sketch)
  Any algorithm that takes a fixed number of bits n as input and

 produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

  Consider some problem X in NP. It has a poly-time certifier C(s, t).
To determine whether s is in X, need to know if there exists a
 certificate t of length p(|s|) such that C(s, t) = yes.

  View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t)
 and convert it into a poly-size circuit K.

–  first |s| bits are hard-coded with s
–  remaining p(|s|) bits represent bits of t

  Circuit K is satisfiable iff C(s, t) = yes.

19

∧
¬

u-v

∨

1

independent set of size 2?

n inputs (nodes in independent set) hard-coded inputs (graph description)

∨

∨

∧

u-w

0

∧

v-w

1

∧

u
?

∧

v
?

∧

w
?

∧

∨

set of size 2?

both endpoints of some edge have been chosen?

independent set?

Example

Ex. Construction below creates a circuit K whose inputs can be set so
 that K outputs true iff graph G has an independent set of size 2.

u

v w

€

n
2











G = (V, E), n = 3

20

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
  Step 1. Show that Y is in NP.
  Step 2. Choose an NP-complete problem X.
  Step 3. Prove that X ≤ p Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP
 with the property that X ≤ P Y then Y is NP-complete.

Pf. Let W be any problem in NP. Then W ≤ P X ≤ P Y.
  By transitivity, W ≤ P Y.
  Hence Y is NP-complete. ▪ by assumption by definition of

NP-complete

21

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP.
  Let K be any circuit.
  Create a 3-SAT variable xi for each circuit element i.
  Make circuit compute correct values at each node:

–  x2 = ¬ x3 ⇒ add 2 clauses:
–  x1 = x4 ∨ x5 ⇒ add 3 clauses:
–  x0 = x1 ∧ x2 ⇒ add 3 clauses:

  Hard-coded input values and output value.
–  x5 = 0 ⇒ add 1 clause:
–  x0 = 1 ⇒ add 1 clause:

  Final step: turn clauses of length < 3 into
clauses of length exactly 3. ▪

∨

∧

¬

0 ? ?

output

x0

x2 x1

€

x2 ∨ x3 , x2 ∨ x3

€

x1 ∨ x4 , x1 ∨ x5 , x1 ∨ x4 ∨ x5

€

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3 x4 x5

€

x5

€

x0

22

Observation. All problems below are NP-complete and polynomial
 reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLE INDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULING PLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

23

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
  Packing problems: SET-PACKING, INDEPENDENT SET.
  Covering problems: SET-COVER, VERTEX-COVER.
  Constraint satisfaction problems: SAT, 3-SAT.
  Sequencing problems: HAMILTONIAN-CYCLE, TSP.
  Partitioning problems: 3D-MATCHING 3-COLOR.
  Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

