
7.5  Bipartite Matching 



3 

Matching. 
  Input:  undirected graph G = (V, E). 
  M ⊆ E is a matching if each node appears in at most edge in M. 
  Max matching:  find a max cardinality matching. 

Matching 



4 

Bipartite Matching 

Bipartite matching. 
  Input:  undirected, bipartite graph G = (L ∪ R, E). 
  M ⊆ E is a matching if each node appears in at most edge in M. 
  Max matching:  find a max cardinality matching. 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

matching 

1-2', 3-1', 4-5'   

R L 



5 

Bipartite Matching 

Bipartite matching. 
  Input:  undirected, bipartite graph G = (L ∪ R, E). 
  M ⊆ E is a matching if each node appears in at most edge in M. 
  Max matching:  find a max cardinality matching. 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

R L 

max matching 

1-1', 2-2', 3-3' 4-4'   



6 

Max flow formulation. 
  Create digraph G' = (L ∪ R ∪ {s, t},  E' ). 
  Direct all edges from L to R, and assign infinite (or unit) capacity. 
  Add source s, and unit capacity edges from s to each node in L. 
  Add sink t, and unit capacity edges from each node in R to t. 

Bipartite Matching 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

2' 

4' 

1 1 

∞ 

R L 

G' 



7 

Theorem.  Max cardinality matching in G = value of max flow in G'. 
Pf.  ≤ 
  Given max matching M of cardinality k. 
  Consider flow f that sends 1 unit along each of k paths. 
  f is a flow, and has cardinality k.   ▪ 

Bipartite Matching:  Proof of Correctness 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

2' 

4' 

1 1 

∞ 1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

G' G 



8 

Theorem.  Max cardinality matching in G = value of max flow in G'. 
Pf.  ≥ 
  Let f be a max flow in G' of value k. 
  Integrality theorem  ⇒  k is integral and can assume f is 0-1. 
  Consider M = set of edges from L to R with f(e) = 1. 

–  each node in L and R participates in at most one edge in M 
–  |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪ 

Bipartite Matching:  Proof of Correctness 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

G 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

2' 

4' 

1 1 

∞ 

G' 



9 

Def.  A matching M ⊆ E is perfect if each node appears in exactly one
 edge in M. 

Q.  When does a bipartite graph have a perfect matching? 

Structure of bipartite graphs with perfect matchings.  
  Clearly we must have |L| = |R|. 
  What other conditions are necessary? 
  What conditions are sufficient? 

Perfect Matching 



10 

Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes
 adjacent to nodes in S. 

Observation.  If a bipartite graph G = (L ∪ R, E), has a perfect
 matching, then |N(S)| ≥ |S| for all subsets S ⊆ L. 
Pf.  Each node in S has to be matched to a different node in N(S). 

Perfect Matching 

No perfect matching: 
S = { 2, 4, 5 } 
N(S) = { 2', 5' }. 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

L R 



11 

Marriage Theorem.  [Frobenius 1917, Hall 1935]  Let G = (L ∪ R, E) be a
 bipartite graph with |L| = |R|. Then, G has a perfect matching iff 
|N(S)| ≥ |S| for all subsets S ⊆ L. 

Pf.  ⇒  This was the previous observation. 

Marriage Theorem 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

L R 

No perfect matching: 
S = { 2, 4, 5 } 
N(S) = { 2', 5' }. 



12 

Pf.  ⇐  Suppose G does not have a perfect matching. 
  Formulate as a max flow problem and let (A, B) be min cut in G'. 
  By max-flow min-cut, cap(A, B) < | L |. 
  Define LA = L ∩ A,  LB = L ∩ B ,  RA = R ∩ A. 
  cap(A, B)  =  | LB

 | + | RA
 |. 

  Since min cut can't use ∞ edges:  N(LA) ⊆  RA. 
  |N(LA )| ≤ | RA

 |  =  cap(A, B) - | LB
 |  <  | L | - | LB

 |  =  | LA
 |. 

  Choose S = LA .  ▪ 

Proof of Marriage Theorem 

LA = {2, 4, 5} 
LB = {1, 3} 
RA = {2', 5'} 
N(LA) = {2', 5'} 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

4' 

1 ∞ 

2' 

1 

1 

1 

A 

∞ 
G' 

∞ 



13 

Which max flow algorithm to use for bipartite matching? 
  Generic augmenting path:  O(m val(f*) ) = O(mn). 
  Capacity scaling:  O(m2 log C )  = O(m2). 
  Shortest augmenting path:  O(m n1/2). 

Non-bipartite matching. 
  Structure of non-bipartite graphs is more complicated, but 

well-understood.  [Tutte-Berge, Edmonds-Galai] 
  Blossom algorithm:  O(n4).   [Edmonds 1965] 
  Best known:  O(m n1/2).        [Micali-Vazirani 1980] 

Bipartite Matching:  Running Time 



7.6  Disjoint Paths 



15 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,
 find the max number of edge-disjoint s-t paths. 

Def.  Two paths are edge-disjoint if they have no edge in common. 

Ex:  communication networks. 

s 

2 

3 

4 

Edge Disjoint Paths 

5 

6 

7 

t 



16 

Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,
 find the max number of edge-disjoint s-t paths. 

Def.  Two paths are edge-disjoint if they have no edge in common. 

Ex:  communication networks. 

s 

2 

3 

4 

Edge Disjoint Paths 

5 

6 

7 

t 



17 

Max flow formulation:  assign unit capacity to every edge. 

Theorem.  Max number edge-disjoint s-t paths equals max flow value. 
Pf.   ≤  
  Suppose there are k edge-disjoint paths P1, . . . , Pk. 
  Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0. 
  Since paths are edge-disjoint, f is a flow of value k.   ▪ 

Edge Disjoint Paths 

s t 

1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 



18 

Max flow formulation:  assign unit capacity to every edge. 

Theorem.  Max number edge-disjoint s-t paths equals max flow value. 
Pf.   ≥  
  Suppose max flow value is k. 
  Integrality theorem  ⇒  there exists 0-1 flow f of value k. 
  Consider edge (s, u) with f(s, u) = 1. 

–  by conservation, there exists an edge (u, v) with f(u, v) = 1 
–  continue until reach t, always choosing a new edge 

  Produces k (not necessarily simple) edge-disjoint paths.   ▪ 

Edge Disjoint Paths 

s t 

1 

1 

1 

1 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 

can eliminate cycles to get simple paths if desired 



19 

Network connectivity.  Given a digraph G = (V, E) and two nodes s and t, 
 find min number of edges whose removal disconnects t from s. 

Def.  A set of edges F ⊆ E disconnects t from s if all s-t paths uses at
 least on edge in F. 

Network Connectivity 

s 

2 

3 

4 

5 

6 

7 

t 



20 

Edge Disjoint Paths and Network Connectivity 

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t paths is
 equal to the min number of edges whose removal disconnects t from s. 

Pf.  ≤  
  Suppose the removal of F ⊆ E disconnects t from s, and |F| = k. 
  All s-t paths use at least one edge of F. Hence, the number of edge

-disjoint paths is at most k.  ▪ 

s 

2 

3 

4 

5 

6 

7 

t s 

2 

3 

4 

5 

6 

7 

t 



21 

Disjoint Paths and Network Connectivity 

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t paths is
 equal to the min number of edges whose removal disconnects t from s. 

Pf.  ≥ 
  Suppose max number of edge-disjoint paths is k. 
  Then max flow value is k. 
  Max-flow min-cut  ⇒  cut (A, B) of capacity k. 
  Let F be set of edges going from A to B. 
  |F| = k and disconnects t from s.   ▪ 

s 

2 

3 

4 

5 

6 

7 

t s 

2 

3 

4 

5 

6 

7 

t 

A 



7.7  Extensions to Max Flow 



23 

Circulation with Demands 

Circulation with demands. 
  Directed graph G = (V, E). 
  Edge capacities c(e), e ∈ E. 
  Node supply and demands d(v), v ∈ V. 

Def.  A circulation is a function that satisfies: 
  For each e ∈ E:  0   ≤   f(e)   ≤   c(e)          (capacity) 
  For each v ∈ V:             (conservation) 

Circulation problem:  given (V, E, c, d), does there exist a circulation? 

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0 



24 

Necessary condition:  sum of supplies = sum of demands. 

Pf.  Sum conservation constraints for every demand node v. 

3 

10 6 

-7 

-8 

11 

-6 

4 
9 
7 

3 

10 0 

7 

4 
4 

6 

6 
7 
1 

4 2 

flow 

Circulation with Demands 

capacity 

  

€ 

d (v)
v : d (v) > 0
∑ = − d (v)

v : d (v) < 0
∑ =: D

demand 

supply 



25 

Circulation with Demands 

Max flow formulation. 

G: 
supply 

3 

10 6 

-7 

-8 

11 

-6 

4 
9 

10 0 

7 

4 

7 

4 

demand 



26 

Circulation with Demands 

Max flow formulation. 
  Add new source s and sink t. 
  For each v with d(v) < 0, add edge (s, v) with capacity -d(v). 
  For each v with d(v) > 0, add edge (v, t) with capacity  d(v). 
  Claim:  G has circulation iff G' has max flow of value D. 

G': 
supply 

3 

10 6 9 

0 

7 

4 

7 

4 

s 

t 

10 11 

7 8 6 

saturates all edges 
leaving s and entering t 

demand 



27 

Circulation with Demands 

Integrality theorem.  If all capacities and demands are integers, and
 there exists a circulation, then there exists one that is integer-valued. 

Pf.  Follows from max flow formulation and integrality theorem for max
 flow. 

Characterization.  Given (V, E, c, d), there does not exists a circulation
 iff there exists a node partition (A, B) such that Σv∈B dv > cap(A, B) 

Pf idea.  Look at min cut in G'. demand by nodes in B exceeds supply 
of nodes in B plus max capacity of 
edges going from A to B 



28 

Circulation with Demands and Lower Bounds 

Feasible circulation. 
  Directed graph G = (V, E).   
  Edge capacities c(e) and lower bounds  (e), e ∈ E. 
  Node supply and demands d(v), v ∈ V. 

Def.  A circulation is a function that satisfies: 
  For each e ∈ E:    (e)   ≤   f(e)   ≤   c(e)       (capacity) 
  For each v ∈ V:          (conservation) 

Circulation problem with lower bounds.  Given (V, E, , c, d), does there
 exists a a circulation? 

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)



29 

Circulation with Demands and Lower Bounds 

Idea.  Model lower bounds with demands. 
  Send (e) units of flow along edge e. 
  Update demands of both endpoints. 

Theorem.  There exists a circulation in G iff there exists a circulation
 in G'. If all demands, capacities, and lower bounds in G are integers,
 then there is a circulation in G that is integer-valued. 

Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) is a
 circulation in G'. 

v w [2, 9] 

lower bound upper bound 

v w 
d(v) d(w) d(v) + 2 d(w) - 2 

G G' 

7 

capacity 



7.8  Survey Design 



31 

Survey Design 

Survey design. 
  Design survey asking n1 consumers about n2 products. 
  Can only survey consumer i about a product j if they own it. 
  Ask consumer i between ci and ci' questions. 
  Ask between pj and pj' consumers about product j. 

Goal.  Design a survey that meets these specs, if possible. 

Bipartite perfect matching.  Special case when ci = ci' = pi = pi' = 1. 



32 

Survey Design 

Algorithm.  Formulate as a circulation problem with lower bounds. 
  Include an edge (i, j) if customer own product i. 
  Integer circulation  ⇔  feasible survey design. 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

2' 

4' 

[c1, c1'] 

[0, 1] 

consumers 

[p1, p1'] 

[0, ∞] 

products 



7.10  Image Segmentation 



34 

Image Segmentation 

Image segmentation. 
  Central problem in image processing. 
  Divide image into coherent regions. 

Ex:  Three people standing in front of complex background scene.
 Identify each person as a coherent object. 



35 

Image Segmentation 

Foreground / background segmentation. 
  Label each pixel in picture as belonging to 

foreground or background. 
  V = set of pixels, E = pairs of neighboring pixels. 
  ai ≥ 0 is likelihood pixel i in foreground. 
  bi ≥ 0 is likelihood pixel i in background. 
  pij ≥ 0 is separation penalty for labeling one of i 

and j as foreground, and the other as background. 

Goals. 
  Accuracy:  if ai  > bi in isolation, prefer to label i in foreground. 
  Smoothness: if many neighbors of i are labeled foreground, we

 should be inclined to label i as foreground. 
  Find partition (A, B) that maximizes:   

    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
AI{i, j} = 1

∑

foreground background 



36 

Image Segmentation 

Formulate as min cut problem. 
  Maximization. 
  No source or sink. 
  Undirected graph. 

Turn into minimization problem. 

  Maximizing 

is equivalent to minimizing 

  or alternatively 

    

€ 

a j +
j∈B
∑ bi

i∈ A
∑ + pij

(i, j) ∈ E
AI{i, j} = 1

∑

    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
AI{i, j} = 1

∑

  

€ 

a ii ∈ V∑  + b jj ∈ V∑( )
a constant

1 2 4 4 4 3 4 4 4 
  −  a i

i∈ A
∑  − bj

j∈B
∑  + pij

(i, j) ∈ E
AI{i, j} = 1

∑



37 

Image Segmentation 

Formulate as min cut problem. 
  G' = (V', E'). 
  Add source to correspond to foreground; 

add sink to correspond to background 
  Use two anti-parallel edges instead of 

undirected edge. 

s t 

pij 

pij 
pij 

i j pij 

aj 

G' 

bi 



38 

Image Segmentation 

Consider min cut (A, B) in G'. 
   A = foreground. 

  Precisely the quantity we want to minimize. 

€ 

cap(A, B) = a j +
j∈B
∑ bi  +

i∈ A
∑ pij

(i, j) ∈ E
i∈ A, j∈B

∑

G' 

s t i j 

A 

if i and j on different sides, 
pij counted exactly once 

pij 

bi 

aj 


