7.5 Bipartite Matching




Matching

Matching.
« Input: undirected graph G = (V, E).
« M CE is amatching if each node appears in at most edge in M.
« Max matching: find a max cardinality matching.




Bipartite Matching

Bipartite matching.
« Input: undirected, bipartite graph 6 = (L UR, E).
« M CE is amatching if each node appears in at most edge in M.
« Max matching: find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
« Input: undirected, bipartite graph 6 = (L UR, E).
« M CE is amatching if each node appears in at most edge in M.
« Max matching: find a max cardinality matching.
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Bipartite Matching

Max flow formulation.
« Create digraphG' = (LURU (s, 1}, E").
« Direct all edges from L to R, and assign infinite (or unit) capacity.
» Add source s, and unit capacity edges from s to each node in L.
« Add sink 1, and unit capacity edges from each node in R to t.




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

» Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

. fisaflow, and has cardinality k. =




Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. =
. Let f be a max flow in G' of value k.
« Integrality theorem = kis integral and can assume f is O-1.
« Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M| = k: consider cut (LUs,RU ) =
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Perfect Matching

Def. A matching M C E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
. Clearly we must have [L| = |R].
« What other conditions are necessary?
- What conditions are sufficient?



Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L U R, E), has a perfect
matching, then |N(S)| = |S| for all subsets S C L.
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:
5={2,4,5}
N(s)={2',5"}.
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Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR, E) be a
bipartite graph with |L| = |R|. Then, 6 has a perfect matching iff
IN(S)| = |S| for all subsets S C L.

Pf. = This was the previous observation.

No perfect matching:
5={2,4,5}
N(s)={2',5"}.

1



Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G'.
« By max-flow min-cut, cap(A, B) < | L |.
« DefineL,=LNA, Ly=LNB, R,=RNA.
- cap(A,B) = |Lgl+|R4I.
« Since min cut can't use » edges: N(L,) C Ry,.
e INL) =Ry | = cap(A, B)- [ Lgl < [LI-ILgl = I L,l.
« Choose S=1L,. =

L,={2, 4,5}
Lg={1, 3}

® R,={2",5%
N(L,) ={2", 5%}
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Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
« Generic augmenting path: O(m val(f*)) = O(mn).
. Capacity scaling: O(m?log C) = O(m?).
. Shortest augmenting path: O(m nl/2).

Non-bipartite matching.
« Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
. Blossom algorithm: O(n*). [Edmonds 1965]
. Best known: O(m n!/2) [Micali-Vazirani 1980]
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7.6 Disjoint Paths




Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Disjoint path problem. Given a digraph 6 = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
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Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max humber edge-disjoint s-t paths equals max flow value.

Pf. <
» Suppose there are k edge-disjoint paths Py, . . ., Py.
. Set f(e) = 1if e participates in some path P;; else set f(e) = O.
. Since paths are edge-disjoint, f is a flow of value k. =
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Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.
% 1 /?\ :
1 o
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Theorem. Max humber edge-disjoint s-t paths equals max flow value.
Pf. =
Suppose max flow value is k.
Integrality theorem = there exists 0-1 flow f of value k.
Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge
Produces k (not necessarily simple) edge-disjoint paths. =

can eliminate cycles to get simple paths if desired
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Network Connectivity

Network connectivity. Given a digraph 6 = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Def. A set of edges F C E disconnects t from s if all s-t paths uses at
least on edge in F.

2 5
S =<3 6) » T
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Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. <
. Suppose the removal of F C E disconnects t from s, and |F| = k.
« All s-1 paths use at least one edge of F. Hence, the number of edge
-disjoint paths is at most k. =




Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =
» Suppose max number of edge-disjoint paths is k.
« Then max flow value is k.
« Max-flow min-cut = cut (A, B) of capacity k.
. Let F be set of edges going from A to B.
» |F| = k and disconnects t froms. =




7.7 Extensions to Max Flow




Circulation with Demands

Circulation with demands.
« Directed graph 6 = (V, E).
« Edge capacities c(e), e € E.

« Node supply and demands d(v), vE V.
T

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. Foreache €E: 0 = f(e) = c(e) (capacity)
« ForeachveV: 2fe) = Yfle) = dv) (conservation)
eintov eout of v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?
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Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Yd(v)y= Y -d(v) == D

vid(v)>0 vid(v)< 0

Pf. Sum conservation constraints for every demand node v.

-8 -6 «— supply
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flow

24



Circulation with Demands

Max flow formulation.

-8 -6 «— supply
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demand
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Circulation with Demands

Max flow formulation.
= Add new source s and sink t.
« For each v with d(v) < O, add edge (s, v) with capacity -d(v).
« For each v with d(v) > O, add edge (v, 1) with capacity d(v).
« Claim: G has circulation iff G' has max flow of value D.

N\

saturates all edges

ﬁk leaving s and entering t
7

8 6 —— supply

demand
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Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and

there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for max
flow.

Characterization. Given (V, E, ¢, d), there does not exists a circulation
iff there exists a node partition (A, B) such that =, d, > cap(A, B)
I

Pf idea. Look at min cut in G'. demand by nodes in B exceeds supply
of nodes in B plus max capacity of

edges going from A to B

27



Circulation with Demands and Lower Bounds

Feasible circulation.
« Directed graph G = (V, E).
» Edge capacities c(e) and lower bounds (¥} (e), e € E.
« Node supply and demands d(v), vE V.

Def. A circulation is a function that satisfies:

. For each e € E: W (e) = f(e) = c(e) (capacity)
. ForeachveV: >fe) - Yf(e) = d(v)  (conservation)
eintov e out of v

exists a a circulation?
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Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
» Send [¥](e) units of flow along edge e.
« Update demands of both endpoints.
capacity
| 1
@7 [2,9] _,@ @ 7 :@

d(v) d(w) d(v) + 2 dw) - 2
6 o

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a circulation
in G'. If all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

circulation in G'.
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/.8 Survey Design




Survey Design

Survey design.
« Design survey asking n; consumers about n, products.
- Can only survey consumer i about a product j if they own it.
. Ask consumer i between c; and ¢;' questions.
- Ask between p; and p; consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc,=¢,' =p,=p;,' = L.
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Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
« Include an edge (i, j) if customer own product i.
. Integer circulation < feasible survey design.

[0, ]
/@ [0,11 — (1)
[c, ¢l [ps. p1']
| / -
(S @ -(3) t

consumers 5 (5" products
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7.10 Image Segmentation




Image Segmentation

Image segmentation.
« Central problem in image processing.
- Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.
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Image Segmentation

Foreground / background segmentation.

- Label each pixel in picture as belonging to

foreground or background.

. V = set of pixels, E = pairs of neighboring pixels. i

« a; = 0 is likelihood pixel i in foreground.

« b;=0is likelihood pixel i in background.
= pjj= O is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.

« Accuracy: if g; > b; in isolation, prefer to label i in foreground.

« Smoothness: if many neighbors of i are labeled foreground, we
should be inclined to label i as foreground.

- Find partition (A, B) that maximizes: Ya,+ Yb, - Y p;

/N i€A  jEB (iJ))EE
foreground background | AN{ij} =1
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Image Segmentation

Formulate as min cut problem.
= Maximization.
- No source or sink.
« Undirected graph.

Turn into minimization problem.

C. . Ea.+ Eb — E D
= Maximizing Ei e &R
AN =1

is equivalent to minimizing (Eievai +§jevbj) - 3a, -Jgfj ¥
acor;fstant

. or alternatively 2a;+3xb + Y p;
jEB i€ 4 (i,j))EE

E pij
(i,j))EE
AN =1
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Image Segmentation

Formulate as min cut problem.
G'=(V', E).
« Add source to correspond to foreground;
add sink to correspond to background
« Use two anti-parallel edges instead of
undirected edge.

O<7Paj4>0

P

Pij
Pij

—0
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Image Segmentation

Consider min cut (A, B) inG'.
« A = foreground.

cap(A,B) = E a; + E bi + E Pij if i and j on different sides,

JEB = i€A (i,j))EE

iCA. JEB p;; counted exactly once

« Precisely the quantity we want o minimize.
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