
3.5 Connectivity in Directed Graphs

34

Directed Graphs

Directed graph. G = (V, E)
  Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
  Directedness of graph is crucial.
  Modern web search engines exploit hyperlink structure to rank web

 pages by importance.

35

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
 the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
 either directly or indirectly.

36

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
 and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
 reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
 reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.
Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

37

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
  Pick any node s.
  Run BFS from s in G.
  Run BFS from s in Grev.
  Return true iff all nodes reached in both BFS executions.
  Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

3.6 DAGs and Topological Ordering

39

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
 of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

40

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
  Course prerequisite graph: course vi must be taken before vj.
  Compilation: module vi must be compiled before vj.
  Pipeline of computing jobs: output of job vi needed to determine

 input of job vj.

41

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
  Suppose that G has a topological order v1, …, vn and that G also has a

 directed cycle C. Let's see what happens.
  Let vi be the lowest-indexed node in C, and let vj be the node just

 before vi; thus (vj, vi) is an edge.
  By our choice of i, we have i < j.
  On the other hand, since (vj, vi) is an edge and v1, …, vn is a

 topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

42

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

43

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
  Suppose that G is a DAG and every node has at least one incoming

 edge. Let's see what happens.
  Pick any node v, and begin following edges backward from v. Since v

 has at least one incoming edge (u, v) we can walk backward to u.
  Then, since u has at least one incoming edge (x, u), we can walk

 backward to x.
  Repeat until we visit a node, say w, twice.
  Let C denote the sequence of nodes encountered between

 successive visits to w. C is a cycle. ▪

w x u v

44

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
  Base case: true if n = 1.
  Given DAG on n > 1 nodes, find a node v with no incoming edges.
  G - { v } is a DAG, since deleting v cannot create cycles.
  By inductive hypothesis, G - { v } has a topological ordering.
  Place v first in topological ordering; then append nodes of G - { v }
 in topological order. This is valid since v has no incoming edges. ▪

DAG

v

45

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
  Maintain the following information:

–  count[w] = remaining number of incoming edges
–  S = set of remaining nodes with no incoming edges

  Initialization: O(m + n) via single scan through graph.
  Update: to delete v

–  remove v from S
–  decrement count[w] for all edges from v to w, and add w to S if c

 count[w] hits 0
–  this is O(1) per edge ▪

