
3.5  Connectivity in Directed Graphs 
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Directed Graphs 

Directed graph.  G = (V, E) 
  Edge (u, v) goes from node u to node v. 

Ex.  Web graph - hyperlink points from one web page to another. 
  Directedness of graph is crucial. 
  Modern web search engines exploit hyperlink structure to rank web

 pages by importance. 
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Graph Search 

Directed reachability.  Given a node s, find all nodes reachable from s. 

Directed s-t shortest path problem.  Given two node s and t, what is
 the length of the shortest path between s and t? 

Graph search.  BFS extends naturally to directed graphs. 

Web crawler.  Start from web page s.  Find all web pages linked from s,
 either directly or indirectly. 
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Strong Connectivity 

Def.  Node u and v are mutually reachable if there is a path from u to v
 and also a path from v to u. 

Def.  A graph is strongly connected if every pair of nodes is mutually
 reachable. 

Lemma.  Let s be any node.  G is strongly connected iff every node is
 reachable from s, and s is reachable from every node. 

Pf.  ⇒  Follows from definition. 
Pf.  ⇐  Path from u to v: concatenate u-s path with s-v path. 
            Path from v to u: concatenate v-s path with s-u path.   ▪ 

s 

v 

u 

ok if paths overlap 
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Strong Connectivity:  Algorithm 

Theorem.  Can determine if G is strongly connected in O(m + n) time. 
Pf. 
  Pick any node s. 
  Run BFS from s in G. 
  Run BFS from s in Grev. 
  Return true iff all nodes reached in both BFS executions. 
  Correctness follows immediately from previous lemma.   ▪ 

reverse orientation of every edge in G 

strongly connected not strongly connected 



3.6  DAGs and Topological Ordering 



39 

Directed Acyclic Graphs 

Def.  An DAG is a directed graph that contains no directed cycles. 

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj. 

Def.  A topological order of a directed graph G = (V, E) is an ordering
 of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j. 

a DAG a topological ordering 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Precedence Constraints 

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj. 

Applications. 
  Course prerequisite graph:  course vi must be taken before vj. 
  Compilation:  module vi must be compiled before vj.  
  Pipeline of computing jobs:  output of job vi needed to determine

 input of job vj. 
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Directed Acyclic Graphs 

Lemma.  If G has a topological order, then G is a DAG. 

Pf.  (by contradiction) 
  Suppose that G has a topological order v1, …, vn and that G also has a

 directed cycle C.  Let's see what happens. 
  Let vi be the lowest-indexed node in C, and let vj be the node just

 before vi; thus (vj, vi) is an edge. 
  By our choice of i, we have i < j. 
  On the other hand, since (vj, vi) is an edge and v1, …, vn is a

 topological order, we must have j < i, a contradiction.   ▪ 

v1 vi vj vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 
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Directed Acyclic Graphs 

Lemma.  If G has a topological order, then G is a DAG. 

Q.  Does every DAG have a topological ordering? 

Q.  If so, how do we compute one? 
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Directed Acyclic Graphs 

Lemma.  If G is a DAG, then G has a node with no incoming edges. 

Pf.  (by contradiction) 
  Suppose that G is a DAG and every node has at least one incoming

 edge.  Let's see what happens. 
  Pick any node v, and begin following edges backward from v.  Since v

 has at least one incoming edge (u, v) we can walk backward to u. 
  Then, since u has at least one incoming edge (x, u), we can walk

 backward to x. 
  Repeat until we visit a node, say w, twice. 
  Let C denote the sequence of nodes encountered between

 successive visits to w.  C is a cycle.   ▪ 

w x u v 
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Directed Acyclic Graphs 

Lemma.  If G is a DAG, then G has a topological ordering. 

Pf.  (by induction on n) 
  Base case:  true if n = 1. 
  Given DAG on n > 1 nodes, find a node v with no incoming edges. 
  G - { v } is a DAG, since deleting v cannot create cycles. 
  By inductive hypothesis, G - { v } has a topological ordering. 
  Place v first in topological ordering; then append nodes of G - { v } 
   in topological order. This is valid since v has no incoming edges.   ▪ 

DAG 

v 
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Topological Sorting Algorithm:  Running Time 

Theorem.  Algorithm finds a topological order in O(m + n) time. 

Pf.   
  Maintain the following information: 

–  count[w] = remaining number of incoming edges 
–  S = set of remaining nodes with no incoming edges 

  Initialization:  O(m + n) via single scan through graph. 
  Update:  to delete v 

–  remove v from S 
–  decrement count[w] for all edges from v to w, and add w to S if c

 count[w] hits 0 
–  this is O(1) per edge    ▪ 


