
5.4 Closest Pair of Points

23

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
 Euclidean distance between them.

Fundamental geometric primitive.
  Graphics, computer vision, geographic information systems,

 molecular modeling, air traffic control.
  Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

24

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

25

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

26

Closest Pair of Points

Algorithm.
  Divide: draw vertical line L so that roughly ½n points on each side.

L

27

Closest Pair of Points

Algorithm.
  Divide: draw vertical line L so that roughly ½n points on each side.
  Conquer: find closest pair in each side recursively.

12

21

L

28

Closest Pair of Points

Algorithm.
  Divide: draw vertical line L so that roughly ½n points on each side.
  Conquer: find closest pair in each side recursively.
  Combine: find closest pair with one point in each side.
  Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
  Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

31

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
  Observation: only need to consider points within δ of line L.
  Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

32

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
  Observation: only need to consider points within δ of line L.
  Sort points in 2δ-strip by their y coordinate.
  Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

33

Closest Pair of Points

Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
  No two points lie in same ½δ-by-½δ box.
  Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪

Fact. Still true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

½δ

 2 rows
½δ

½δ

39

i

j

34

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between
 each point and next 11 neighbors. If any of these
 distances is less than δ, update δ.

 return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

35

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
  Each recursive call returns two lists: all points sorted by y

 coordinate, and all points sorted by x coordinate.
  Sort by merging two pre-sorted lists.

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

5.5 Integer Multiplication

37

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
  O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a × b.
  Brute force solution: Θ(n2) bit operations.

1

1

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0 0 0 0 0 0 0

1 0 1 0 1 0 1

1 0 1 0 1 0 1

1 0 1 0 1 0 1

1 0 1 0 1 0 1

1 0 1 0 1 0 1

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

1

0

1

1

1

1

1

0

0

*

1

0 1 1 1

1 1 0 1 +
0 1 0 1

1 1 1
0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1 1

Add

Multiply

38

To multiply two n-digit integers:
  Multiply four pairs of ½n-digit integers.
  Add two ½n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication: Warmup

€

T(n) = 4T n /2()
recursive calls
1 2 4 3 4

 + Θ(n)
add, shift
1 2 3

 ⇒ T(n) =Θ(n2)

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

assumes n is a power of 2

39

To multiply two n-digit integers:
  Add two ½n digit integers.
  Multiply three ½n-digit integers.
  Add, subtract, and shift ½n-digit integers to obtain result.

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
 in O(n1.585) bit operations.

Karatsuba Multiplication

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ T n /2 () + T n /2 () + T 1+ n /2 ()
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4
+ Θ(n)

add, subtract, shift
1 2 4 3 4

⇒ T(n) = O(n log 2 3) = O(n1.585)

A B C A C

40

Karatsuba: Recursion Tree

€

T(n) =
0 if n =1

3T(n /2) + n otherwise




n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4) T(n/4)

T(n/2)

T(n/4) T(n/4) T(n/4)

. . .

. . .

€

T(n) = n 3
2()k

k=0

log2 n

∑ =
3
2()1+ log2 n

−1
3
2 −1

 = 3nlog2 3 − 2

