Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

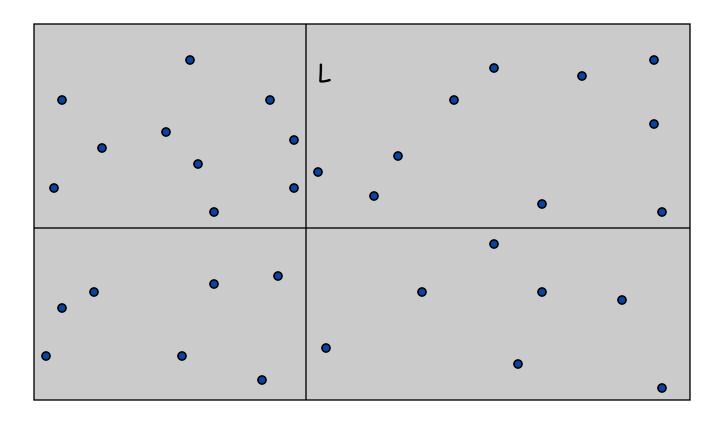
1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

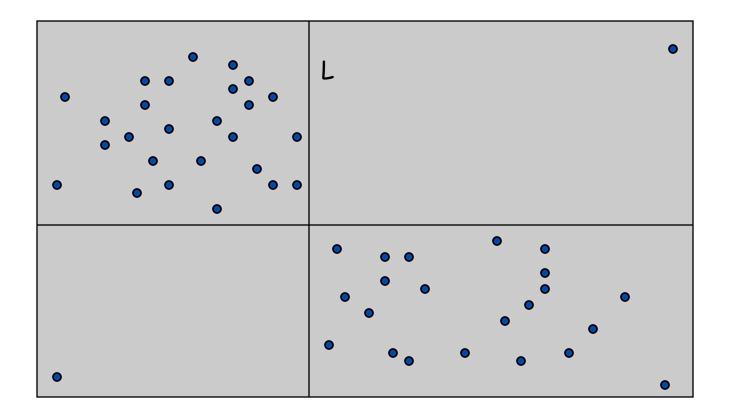
Divide. Sub-divide region into 4 quadrants.



Closest Pair of Points: First Attempt

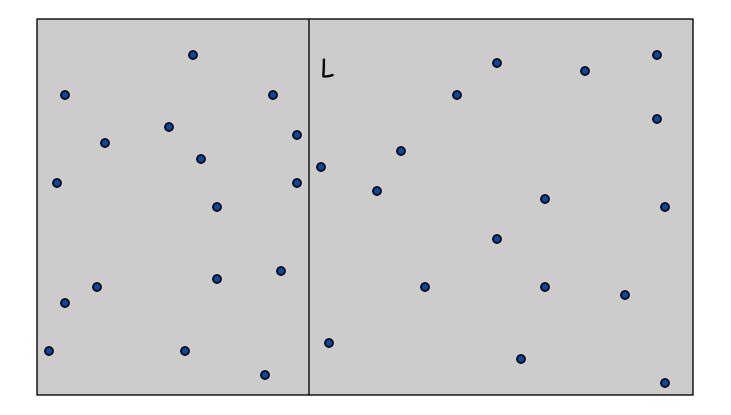
Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.



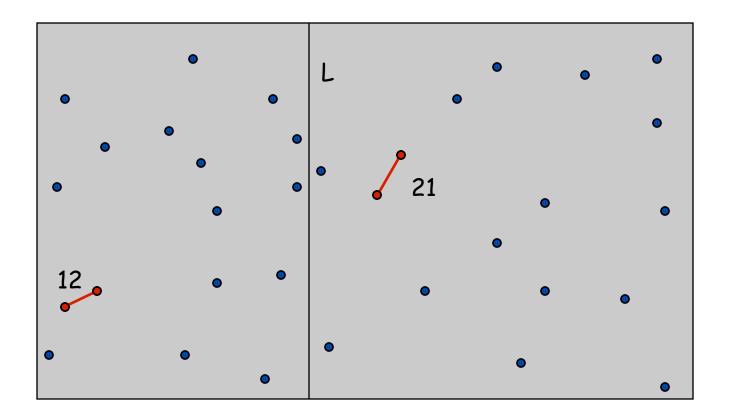
Algorithm.

■ Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.



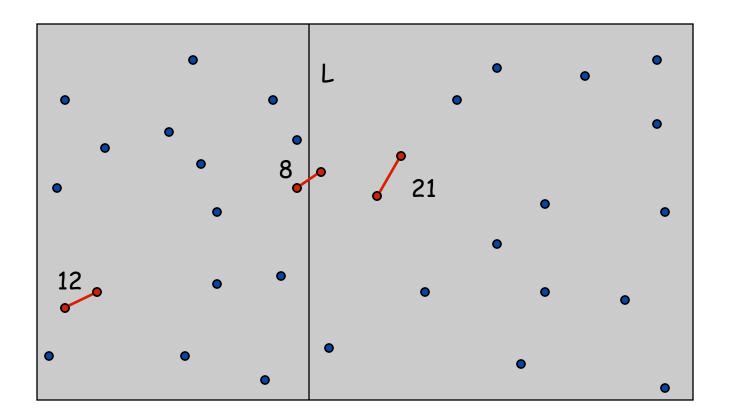
Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

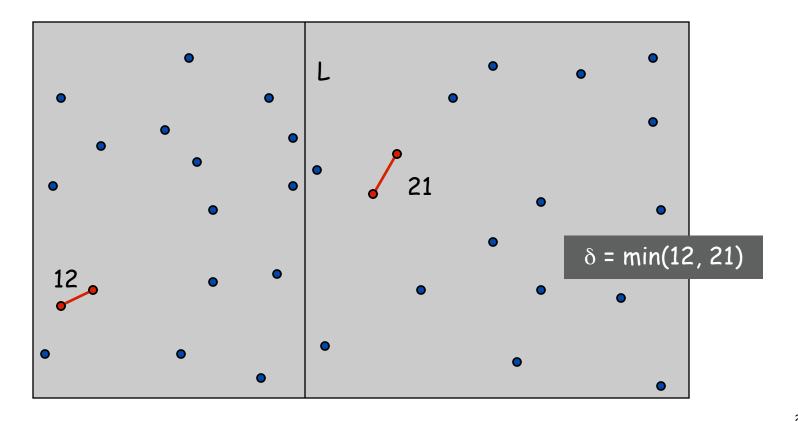


Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

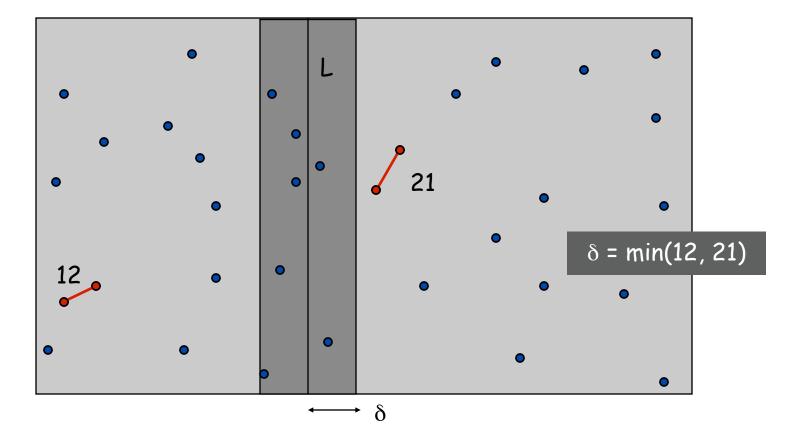


Find closest pair with one point in each side, assuming that distance $< \delta$.



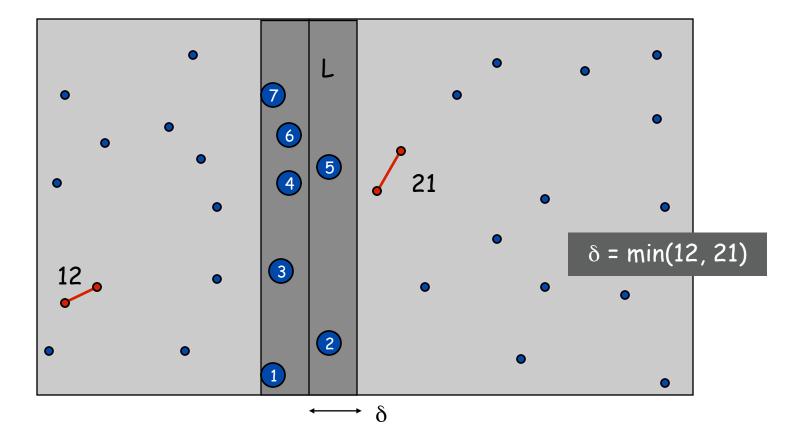
Find closest pair with one point in each side, assuming that distance $< \delta$.

 \blacksquare Observation: only need to consider points within δ of line L.



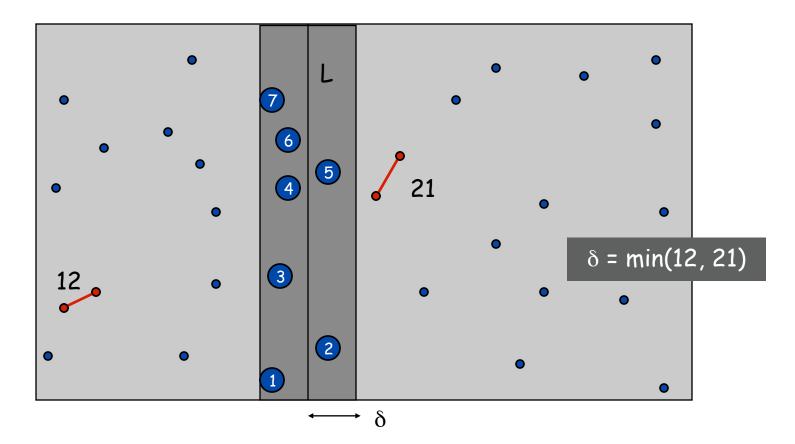
Find closest pair with one point in each side, assuming that distance $< \delta$.

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.



Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!



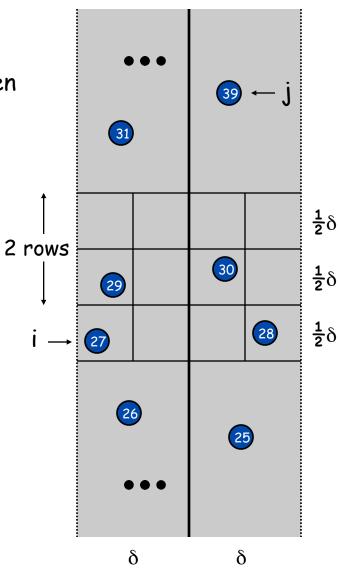
Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ .

Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 12 with 7.



Closest Pair Algorithm

```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
   Compute separation line L such that half the points
                                                                          O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                          2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
                                                                          O(n)
   Delete all points further than \delta from separation line L
                                                                          O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                          O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
}
```

Closest Pair of Points: Analysis

Running time.

$$\mathrm{T}(n) \leq 2T \big(n/2\big) + O(n \log n) \ \Rightarrow \ \mathrm{T}(n) = O(n \log^2 n)$$

- \mathbb{Q} . Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive call returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \leq 2T \big(n/2\big) + O(n) \ \Rightarrow \ \mathrm{T}(n) = O(n \log n)$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

 \bullet O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a × b.

■ Brute force solution: $\Theta(n^2)$ bit operations.

									1 1 0 1 0 1 0 1
									* 0 1 1 1 1 0 1
									1 1 0 1 0 1 0 1
									Multiply 0 0 0 0 0 0 0
									1 1 0 1 0 1 0 1
									1 1 0 1 0 1 0 1
1	1	1	1	1	1	0	1		1 1 0 1 0 1 0 1
	1	1	0	1	0	1	0	1	1 1 0 1 0 1 0 1
+	0	1	1	1	1	1	0	1	1 1 0 1 0 1 0 1
1	0	1	0	1	0	0	1	0	0 0 0 0 0 0 0
	Add								0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:

- Multiply four pairs of $\frac{1}{2}$ n-digit integers.
- Add two $\frac{1}{2}$ n-digit integers, and shift to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right) = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

1

assumes n is a power of 2

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two $\frac{1}{2}$ n digit integers.
- Multiply three ½n-digit integers.
- Add, subtract, and shift $\frac{1}{2}$ n-digit integers to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$

$$A \qquad B \qquad A \qquad C \qquad C$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1 + \lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2}\right)^k = \frac{\left(\frac{3}{2}\right)^{1 + \log_2 n} - 1}{\frac{3}{2} - 1} = 3n^{\log_2 3} - 2$$

