
5.4  Closest Pair of Points 
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Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest
 Euclidean distance between them. 

Fundamental geometric primitive. 
  Graphics, computer vision, geographic information systems,

 molecular modeling, air traffic control. 
  Special case of nearest neighbor, Euclidean MST, Voronoi. 

Brute force.  Check all pairs of points p and q with Θ(n2) comparisons. 

1-D version.  O(n log n) easy if points are on a line. 

Assumption.  No two points have same x coordinate. 

to make presentation cleaner 

fast closest pair inspired fast algorithms for these problems 
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Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 

L 
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Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 
Obstacle.  Impossible to ensure n/4 points in each piece. 

L 
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Closest Pair of Points 

Algorithm. 
  Divide:  draw vertical line L so that roughly ½n points on each side. 

L 
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Closest Pair of Points 

Algorithm. 
  Divide:  draw vertical line L so that roughly ½n points on each side. 
  Conquer:  find closest pair in each side recursively. 

12 

21 

L 
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Closest Pair of Points 

Algorithm. 
  Divide:  draw vertical line L so that roughly ½n points on each side. 
  Conquer:  find closest pair in each side recursively. 
  Combine:  find closest pair with one point in each side. 
  Return best of 3 solutions. 

12 

21 
8 

L 

seems like Θ(n2)  
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 

12 

21 

δ = min(12, 21) 

L 
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
  Observation:  only need to consider points within δ of line L. 

12 

21 

δ 

L 

δ = min(12, 21) 
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
  Observation:  only need to consider points within δ of line L. 
  Sort points in 2δ-strip by their y coordinate. 

L 

δ = min(12, 21) 
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
  Observation:  only need to consider points within δ of line L. 
  Sort points in 2δ-strip by their y coordinate. 
  Only check distances of those within 11 positions in sorted list! 

L 

δ = min(12, 21) 
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Closest Pair of Points 

Def.  Let si be the point in the 2δ-strip, with 
the ith smallest y-coordinate. 

Claim.  If |i – j| ≥ 12, then the distance between 
si and sj is at least δ. 
Pf. 
  No two points lie in same ½δ-by-½δ box. 
  Two points at least 2 rows apart 

have distance ≥  2(½δ).   ▪ 

Fact.  Still true if we replace 12 with 7. 

δ 
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Closest Pair Algorithm 

Closest-Pair(p1, …, pn) { 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 

   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 

   Delete all points further than δ from separation line L 

   Sort remaining points by y-coordinate. 

   Scan points in y-order and compare distance between 
   each point and next 11 neighbors. If any of these 
   distances is less than δ, update δ. 

   return δ. 
} 

O(n log n) 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 
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Closest Pair of Points:  Analysis 

Running time. 

Q.  Can we achieve O(n log n)? 

A.  Yes. Don't sort points in strip from scratch each time. 
  Each recursive call returns two lists: all points sorted by y

 coordinate, and all points sorted by x coordinate. 
  Sort by merging two pre-sorted lists. 

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  

€ 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)



5.5  Integer Multiplication 



37 

Integer Arithmetic 

Add.  Given two n-digit integers a and b, compute a + b. 
  O(n) bit operations. 

Multiply.  Given two n-digit integers a and b, compute a × b. 
  Brute force solution: Θ(n2) bit operations. 
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To multiply two n-digit integers: 
  Multiply four pairs of ½n-digit integers. 
  Add two ½n-digit integers, and shift to obtain result. 

Divide-and-Conquer Multiplication:  Warmup 

    

€ 

T(n)  =  4T n /2( )
recursive calls
1 2 4 3 4 

 +  Θ(n)
add, shift
1 2 3 

 ⇒  T(n) =Θ(n2 )

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

assumes n is a power of 2 
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To multiply two n-digit integers: 
  Add two ½n digit integers. 
  Multiply three ½n-digit integers. 
  Add, subtract, and shift ½n-digit integers to obtain result. 

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers
 in O(n1.585) bit operations. 

Karatsuba Multiplication 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

    

€ 

T(n) ≤ T n /2 ( ) + T n /2 ( ) + T 1+ n /2 ( )
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
+ Θ(n)

add, subtract, shift
1 2 4 3 4 

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A B C A C 
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Karatsuba:  Recursion Tree 

  

€ 

T(n) =
0 if  n =1

3T(n /2)  +  n otherwise
 
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€ 

T(n) = n  3
2( )k

k=0

log2 n

∑  =  
3
2( )1+ log2 n

−1
3
2 −1

 =   3nlog2 3 − 2


