Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
= Solve problem to optimality.
« Solve problem in poly-time.
« Solve arbitrary instances of the problem.

p-approximation algorithm.
« Guaranteed fo run in poly-time.
» Guaranteed to solve arbitrary instance of the problem
» Guaranteed to find solution within ratio p of frue optimum.

Challenge. Need to prove a solution’s value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t;.
» Job j must run contiguously on one machine.
« A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine iisL; = X;c 4 t;

Def. The makespan is the maximum load on any machine L = max; L..

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
=« Consider n jobs in some fixed order.
=« Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t;,t,,..,t)) {

for 1 =1 tom {
L, < 0 «— load on machine i

J(i) < ¢ jobs assigned to machine i

}

for j =1 to n {
i = argmin, L, «— machine i has smallest load
J(i) < J(i) U {j} <«— assign job jtomachinei
L < L, + t4 «— update load of machine i

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
« First worst-case analysis of an approximation algorithm.
« Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* = 5. 1;.
Pf.
- The fotal processing time is X 1;.
= One of m machines must do at least a 1/m fraction of total work. =

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L, of bottleneck machine i.
. Let j belast job scheduled on machine i.

» When job j assigned to machine i, i had smallest load. Tts load
before assignment isL;-t; = Lj-1; < L, foralll<ks<m.

blue jobs scheduled before j

|
I N O

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L, of bottleneck machine i.

Let j be last job scheduled on machine i.

When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = Lj-1; < L foralll<ks=<m.
Sum inequalities over all k and divide by m:

B~
I
IA

i j #Ekl’k
= %Ek Tk

Lemmal — < [L*

Lemma 2

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

list scheduling makespan = 19

v

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentidlly yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

v

10

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing tfime, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t,,t,,..,t)) {
Sort jobs so that t;, 2 t,2 . 2 t

n

for i =1 tom {
L, < 0 «— load on machine i

J(i) < ¢ «— jobs assigned to machine i

}

for j =1 ton {
i = argmink L, «— machine i has smallest load
J(i) <« J(i) U {3} — assign job j to machine i
L < L; + t4 «— update load of machine i

1

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. =

Lemma 3. If there are more thanm jobs,L* =21,.;.
Pf.
« Consider first m+1 jobs t, ..., t,.1.
« Since the t;'s are in descending order, each takes at least t,,; fime.
« There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs. =

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

J
— —
< L* < L*

Lemma 3
(by observation, can assume number of jobs>m)

=

12

Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and
one job of length m.

13

11.2 Center Selection

Center Selection Problem

Input. Set of nsites s, .., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4

@ center
| site

15

Center Selection Problem

Input. Set of nsites s, .., s,.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
« dist(x, y) = distance between x and y.
. dist(s;, C) = min . . dist(s;, ¢c) = distance from s; to closest center.
« r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

= dist(x,x)=0 (identity)

« dist(x,y) = dist(y, x) (symmetry)

« dist(x, y) = dist(x, z) + dist(z, y) (triangle inequality)

16

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinitel

@ center
| site

17

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

l.l. u u : -
guENE ® EE B
- L greedy center 1 gl N
| L
@ center

k = 2 centers B site

18

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Greedy-Center-Selection(k, n, s,,s,,..,8,) {

C=9¢
repeat k times {
Select a site s; with maximum dist(s;, C)

Add s; to C
} site farthest from any center

return C

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

19

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*)< % r(C).

« For each site c; in C, consider ball of radius % r(C) around it.
Exactly one ¢;* in each ball; let ¢; be the site paired with ¢;*.
Consider any site s and its closest center ¢;* in C*.
dist(s, C) = dist(s, ¢;) = dist(s, ¢*) + dist(¢c*, ¢c)) = 2r(C*).
Thus r(C) = 2r(C*). = \ NS

A-inequality < r(C*) since ¢* is closest center

e C*
m sites

20

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

\

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

21

