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Approximation Algorithms 

Q.  Suppose I need to solve an NP-hard problem. What should I do? 
A.  Theory says you're unlikely to find a poly-time algorithm. 

Must sacrifice one of three desired features. 
  Solve problem to optimality. 
  Solve problem in poly-time. 
  Solve arbitrary instances of the problem. 

ρ-approximation algorithm. 
  Guaranteed to run in poly-time. 
  Guaranteed to solve arbitrary instance of the problem 
  Guaranteed to find solution within ratio ρ of true optimum. 

Challenge.  Need to prove a solution's value is close to optimum, without
 even knowing what optimum value is! 



11.1  Load Balancing 
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Load Balancing 

Input.  m identical machines; n jobs, job j has processing time tj. 
  Job j must run contiguously on one machine. 
  A machine can process at most one job at a time. 

Def.  Let J(i) be the subset of jobs assigned to machine i.  The 
load of machine i is Li = Σj ∈ J(i) tj.  

Def. The makespan is the maximum load on any machine L = maxi Li. 

Load balancing.  Assign each job to a machine to minimize makespan. 
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List-scheduling algorithm. 
  Consider n jobs in some fixed order. 
  Assign job j to machine whose load is smallest so far. 

Implementation.  O(n log n) using a priority queue. 

Load Balancing:  List Scheduling 

List-Scheduling(m, n, t1,t2,…,tn) { 
   for i = 1 to m { 
      Li ← 0 
      J(i) ← φ 
   } 

   for j = 1 to n { 
      i = argmink Lk 
      J(i) ← J(i) ∪ {j} 
      Li ← Li + tj 
   } 
} 

jobs assigned to machine i 
load on machine i 

machine i has smallest load 
assign job j to machine i 
update load of machine i 
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Load Balancing:  List Scheduling Analysis 

Theorem. [Graham, 1966]  Greedy algorithm is a 2-approximation. 
  First worst-case analysis of an approximation algorithm. 
  Need to compare resulting solution with optimal makespan L*. 

Lemma 1.  The optimal makespan L* ≥ maxj tj.    
Pf.  Some machine must process the most time-consuming job.  ▪ 

Lemma 2.  The optimal makespan  
Pf.   
  The total processing time is  Σj tj . 
  One of m machines must do at least a 1/m fraction of total work.  ▪ € 

L * ≥ 1
m t jj∑ .
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 
Pf.  Consider load Li of bottleneck machine i. 
  Let j be last job scheduled on machine i. 
  When job j assigned to machine i, i had smallest load.  Its load

 before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m. 

j 

0 
L = Li Li - tj  

machine i 

blue jobs scheduled before j 
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 
Pf.  Consider load Li of bottleneck machine i. 
  Let j be last job scheduled on machine i. 
  When job j assigned to machine i, i had smallest load.  Its load

 before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m. 
  Sum inequalities over all k and divide by m: 

  Now      ▪ 
€ 

Li −  t j ≤ 1
m Lkk∑

= 1
m tkk∑

≤ L *

  

€ 

Li  =  (Li − t j )
≤ L*

1 2 4 3 4 
+ t j

≤ L*
{

  ≤  2L *.

Lemma 2 

Lemma 1 
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Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 
A.  Essentially yes. 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

machine 2 idle 
machine 3 idle 
machine 4 idle 
machine 5 idle 
machine 6 idle 
machine 7 idle 
machine 8 idle 
machine 9 idle 
machine 10 idle 

list scheduling makespan = 19 

m = 10 
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Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 
A.  Essentially yes. 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

m = 10 

optimal makespan = 10 



11 

Load Balancing:  LPT Rule 

Longest processing time (LPT).  Sort n jobs in descending order of
 processing time, and then run list scheduling algorithm. 

LPT-List-Scheduling(m, n, t1,t2,…,tn) { 
   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn 

   for i = 1 to m { 
      Li ← 0 
      J(i) ← φ 
   } 

   for j = 1 to n { 
      i = argmink Lk 
      J(i) ← J(i) ∪ {j} 
      Li ← Li + tj 
   } 
} 

jobs assigned to machine i 
load on machine i 

machine i has smallest load 
assign job j to machine i 

update load of machine i 
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Load Balancing:  LPT Rule 

Observation.  If at most m jobs, then list-scheduling is optimal. 
Pf.  Each job put on its own machine.  ▪ 

Lemma 3.  If there are more than m jobs, L* ≥ 2 tm+1. 
Pf.  
  Consider first m+1 jobs t1, …, tm+1. 
  Since the ti's are in descending order, each takes at least tm+1 time.  
  There are m+1 jobs and m machines, so by pigeonhole principle, at

 least one machine gets two jobs.  ▪ 

Theorem.  LPT rule is a 3/2 approximation algorithm. 
Pf.  Same basic approach as for list scheduling. 

               ▪ 
  

€ 

Li =  (Li − t j )
≤ L*

1 2 4 3 4 
+ t j

≤ 1
2 L*
{

  ≤  3
2 L *.

Lemma 3 
( by observation, can assume number of jobs > m ) 
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Load Balancing:  LPT Rule 

Q.  Is our 3/2 analysis tight? 
A.  No. 

Theorem.  [Graham, 1969]  LPT rule is a 4/3-approximation. 
Pf.  More sophisticated analysis of same algorithm.  

Q.  Is Graham's 4/3 analysis tight? 
A.  Essentially yes. 

Ex:  m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and
 one job of length m. 



11.2  Center Selection 
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center 

r(C) 

Center Selection Problem 

Input.  Set of n sites s1, …, sn. 

Center selection problem.  Select k centers C so that maximum
 distance from a site to nearest center is minimized. 

site 

k = 4 
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Center Selection Problem 

Input.  Set of n sites s1, …, sn. 

Center selection problem.  Select k centers C so that maximum
 distance from a site to nearest center is minimized. 

Notation.   
  dist(x, y) = distance between x and y. 
  dist(si, C) = min c ∈ C dist(si, c)  = distance from si to closest center. 
  r(C) = maxi dist(si, C) = smallest covering radius. 

Goal.  Find set of centers C that minimizes r(C), subject to |C| = k. 

Distance function properties. 
  dist(x, x) = 0     (identity) 
  dist(x, y) = dist(y, x)    (symmetry) 
  dist(x, y) ≤ dist(x, z) + dist(z, y)  (triangle inequality) 
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center 
site 

Center Selection Example 

Ex:  each site is a point in the plane, a center can be any point in the
 plane, dist(x, y) = Euclidean distance. 

Remark:  search can be infinite! 

r(C) 
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Greedy Algorithm:  A False Start 

Greedy algorithm.  Put the first center at the best possible location
 for a single center, and then keep adding centers so as to reduce the
 covering radius each time by as much as possible.  

Remark:  arbitrarily bad! 

greedy center 1 

k = 2 centers site 
center 
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Center Selection:  Greedy Algorithm 

Greedy algorithm.  Repeatedly choose the next center to be the site
 farthest from any existing center. 

Observation. Upon termination all centers in C are pairwise at least r(C)
 apart. 
Pf.  By construction of algorithm. 

Greedy-Center-Selection(k, n, s1,s2,…,sn) { 

   C = φ 
   repeat k times { 
      Select a site si with maximum dist(si, C) 
      Add si to C 
   } 
   return C 
} 

site farthest from any center 
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Center Selection:  Analysis of Greedy Algorithm 

Theorem.  Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*). 
Pf.  (by contradiction)  Assume r(C*) < ½ r(C). 
  For each site ci in C, consider ball of radius ½ r(C) around it. 
  Exactly one ci* in each ball; let ci be the site paired with ci*. 
  Consider any site s and its closest center ci* in C*. 
  dist(s, C)  ≤  dist(s, ci)  ≤  dist(s, ci*) + dist(ci*, ci)  ≤  2r(C*). 
  Thus r(C)  ≤  2r(C*).   ▪ 

C* 
sites 

½ r(C) 

ci 

ci* 
s 

≤  r(C*) since ci* is closest center 

½ r(C) 

½ r(C) 

Δ-inequality 
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Center Selection 

Theorem.  Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*). 

Theorem.  Greedy algorithm is a 2-approximation for center selection
 problem. 

Remark.  Greedy algorithm always places centers at sites, but is still
 within a factor of 2 of best solution that is allowed to place centers
 anywhere. 

Question.  Is there hope of a 3/2-approximation? 4/3?  

e.g., points in the plane 

Theorem.  Unless P = NP, there no ρ-approximation for center-selection 
problem for any ρ < 2. 


