## Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

#### Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

#### $\rho\text{-approximation}$ algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio  $\rho$  of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

# 11.1 Load Balancing

### Load Balancing

Input. m identical machines; n jobs, job j has processing time  $t_j$ .

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is  $L_i = \sum_{j \in J(i)} t_j$ .

Def. The makespan is the maximum load on any machine  $L = \max_i L_i$ .

Load balancing. Assign each job to a machine to minimize makespan.

## Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling (m, n, t_1, t_2, ..., t_n) {

for i = 1 to m {

L_i \leftarrow 0 \quad \leftarrow \text{ load on machine i}

J(i) \leftarrow \phi \quad \leftarrow \text{ jobs assigned to machine i}

}

for j = 1 to n {

i = argmin<sub>k</sub> L_k \quad \leftarrow \text{ machine i has smallest load}

J(i) \leftarrow J(i) \cup \{j\} \leftarrow \text{ assign job j to machine i}

L_i \leftarrow L_i + t_j \quad \leftarrow \text{ update load of machine i}

}
```

Implementation. O(n log n) using a priority queue.



Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L\*.

Lemma 1. The optimal makespan  $L^* \ge \max_j t_j$ .

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan  $L^* \ge \frac{1}{m} \sum_j t_j$ . Pf.

- The total processing time is  $\Sigma_j t_j$ .
- One of m machines must do at least a 1/m fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load  $L_i$  of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is  $L_i t_j \implies L_i t_j \le L_k$  for all  $1 \le k \le m$ .



Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load  $L_i$  of bottleneck machine i.

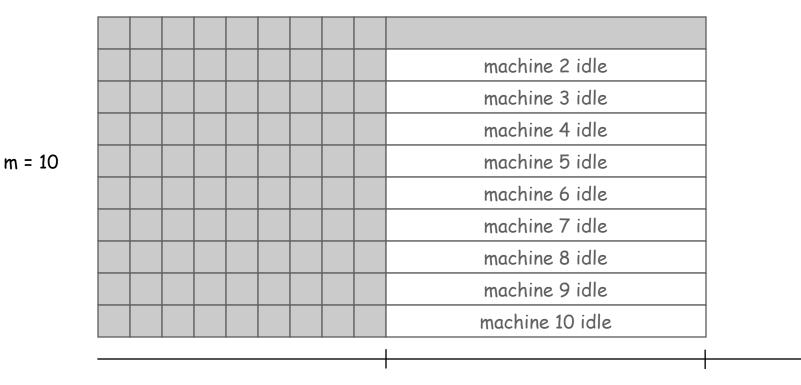
- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is  $L_i t_j \implies L_i t_j \le L_k$  for all  $1 \le k \le m$ .
- Sum inequalities over all k and divide by m:

$$L_{i} - t_{j} \leq \frac{1}{m} \sum_{k} L_{k}$$
$$= \frac{1}{m} \sum_{k} t_{k}$$
  
Lemma 1  $\rightarrow \leq L^{*}$ 

• Now 
$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq L^*} \leq 2L^*$$
.  
• Lemma 2

- Q. Is our analysis tight?
- A. Essentially yes.

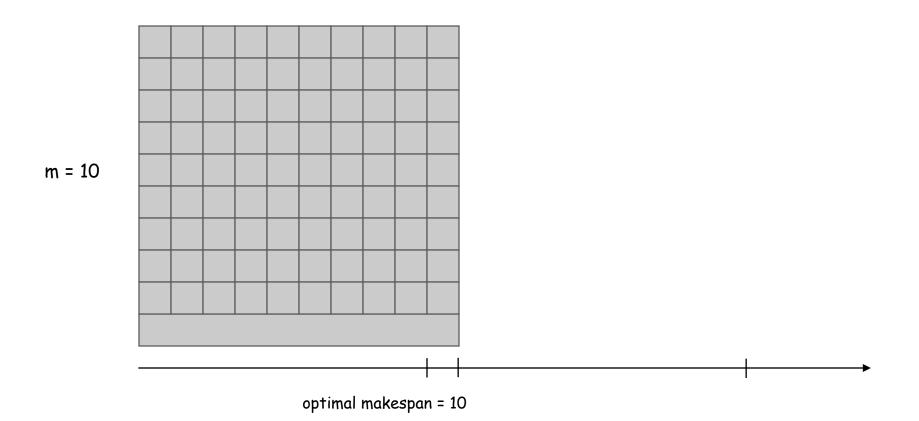
Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m



list scheduling makespan = 19

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m



#### Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling (m, n, t_1, t_2, ..., t_n) {

Sort jobs so that t_1 \ge t_2 \ge ... \ge t_n

for i = 1 to m {

L_i \leftarrow 0 \qquad \leftarrow \ \text{load on machine } i

J(i) \leftarrow \phi \qquad \leftarrow \ \text{jobs assigned to machine } i

}

for j = 1 to n {

i = argmin_k L_k \qquad \leftarrow \ \text{machine } i \ \text{has smallest load}

J(i) \leftarrow J(i) \cup \{j\} \leftarrow \ \text{assign job } j \ \text{to machine } i

L_i \leftarrow L_i + t_j \qquad \leftarrow \ \text{update load of machine } i

}
```

#### Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs,  $L^* \ge 2 t_{m+1}$ . Pf.

- Consider first m+1 jobs t<sub>1</sub>, ..., t<sub>m+1</sub>.
- Since the  $t_i$ 's are in descending order, each takes at least  $t_{m+1}$  time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs.

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

$$L_{i} = \underbrace{(L_{i} - t_{j})}_{\leq L^{*}} + \underbrace{t_{j}}_{\leq \frac{1}{2}L^{*}} \leq \frac{3}{2}L^{*}.$$

Lemma 3 ( by observation, can assume number of jobs > m )

## Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?

A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation. Pf. More sophisticated analysis of same algorithm.

- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

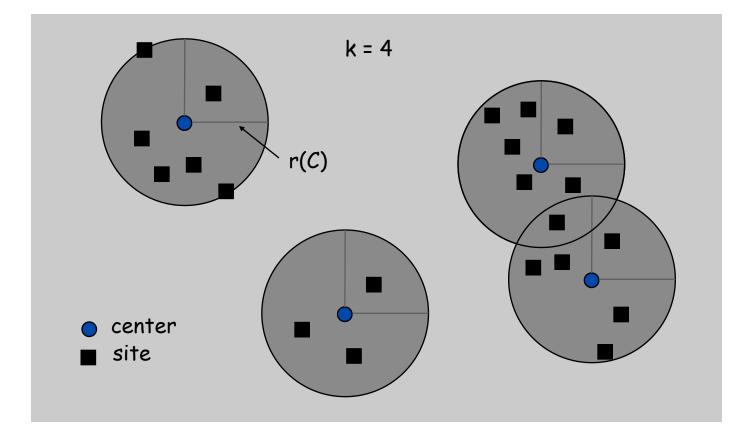
Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1 and one job of length m.

## 11.2 Center Selection

#### **Center Selection Problem**

Input. Set of n sites  $s_1, ..., s_n$ .

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.



## **Center Selection Problem**

Input. Set of n sites  $s_1, ..., s_n$ .

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

#### Notation.

- dist(x, y) = distance between x and y.
- dist( $s_i$ , C) = min<sub>c \in C</sub> dist( $s_i$ , c) = distance from  $s_i$  to closest center.
- $r(C) = \max_i \operatorname{dist}(s_i, C) = \operatorname{smallest} \operatorname{covering} \operatorname{radius}$ .

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

#### Distance function properties.

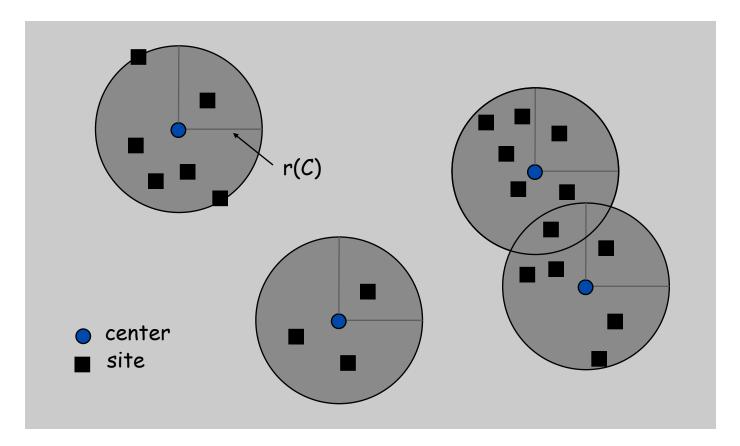
- dist(x, x) = 0
- dist(x, y) = dist(y, x)
- dist(x, y) ≤ dist(x, z) + dist(z, y)

(identity) (symmetry) (triangle inequality)

### Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

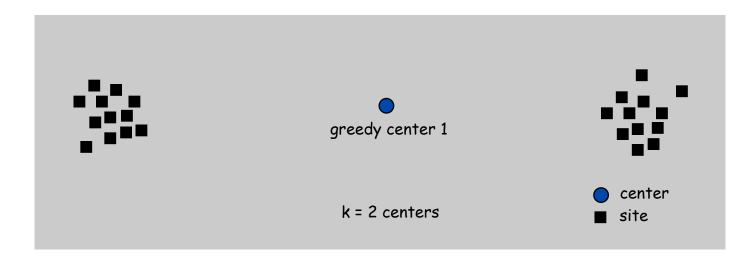
Remark: search can be infinite!



## Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!



## Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,..., s<sub>n</sub>) {
    C = $\phi$
    repeat k times {
        Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
        Add s<sub>i</sub> to C
        f
        site farthest from any center
        return C
    }
```

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

#### Center Selection: Analysis of Greedy Algorithm

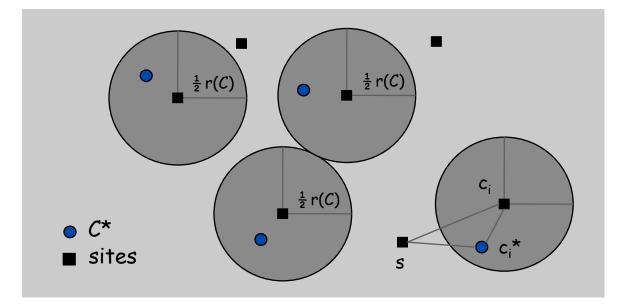
Theorem. Let C\* be an optimal set of centers. Then  $r(C) \le 2r(C^*)$ . Pf. (by contradiction) Assume  $r(C^*) < \frac{1}{2}r(C)$ .

- For each site  $c_i$  in C, consider ball of radius  $\frac{1}{2}r(C)$  around it.
- Exactly one  $c_i^*$  in each ball; let  $c_i$  be the site paired with  $c_i^*$ .
- Consider any site s and its closest center  $c_i^*$  in  $C^*$ .
- dist(s, C)  $\leq$  dist(s, c<sub>i</sub>)  $\leq$  dist(s, c<sub>i</sub>\*) + dist(c<sub>i</sub>\*, c<sub>i</sub>)  $\leq$  2r(C\*).

• Thus 
$$r(C) \leq 2r(C^*)$$
.

Δ-inequality

 $\leq$  r(C\*) since c<sub>i</sub>\* is closest center



#### Center Selection

Theorem. Let C\* be an optimal set of centers. Then  $r(C) \leq 2r(C^*)$ .

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no  $\rho\text{-approximation}$  for center-selection problem for any  $\rho$  < 2.