
2

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
  Solve problem to optimality.
  Solve problem in poly-time.
  Solve arbitrary instances of the problem.

ρ-approximation algorithm.
  Guaranteed to run in poly-time.
  Guaranteed to solve arbitrary instance of the problem
  Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
 even knowing what optimum value is!

11.1 Load Balancing

4

Load Balancing

Input. m identical machines; n jobs, job j has processing time tj.
  Job j must run contiguously on one machine.
  A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing. Assign each job to a machine to minimize makespan.

5

List-scheduling algorithm.
  Consider n jobs in some fixed order.
  Assign job j to machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i

6

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
  First worst-case analysis of an approximation algorithm.
  Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* ≥ maxj tj.
Pf. Some machine must process the most time-consuming job. ▪

Lemma 2. The optimal makespan
Pf.
  The total processing time is Σj tj .
  One of m machines must do at least a 1/m fraction of total work. ▪ €

L * ≥ 1
m t jj∑ .

7

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
  Let j be last job scheduled on machine i.
  When job j assigned to machine i, i had smallest load. Its load

 before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.

j

0
L = Li Li - tj

machine i

blue jobs scheduled before j

8

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
  Let j be last job scheduled on machine i.
  When job j assigned to machine i, i had smallest load. Its load

 before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.
  Sum inequalities over all k and divide by m:

  Now ▪
€

Li − t j ≤ 1
m Lkk∑

= 1
m tkk∑

≤ L *

€

Li = (Li − t j)
≤ L*

1 2 4 3 4
+ t j

≤ L*
{

 ≤ 2L *.

Lemma 2

Lemma 1

9

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10

10

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10

11

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
 processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
 Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i

12

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. ▪

Lemma 3. If there are more than m jobs, L* ≥ 2 tm+1.
Pf.
  Consider first m+1 jobs t1, …, tm+1.
  Since the ti's are in descending order, each takes at least tm+1 time.
  There are m+1 jobs and m machines, so by pigeonhole principle, at

 least one machine gets two jobs. ▪

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

 ▪

€

Li = (Li − t j)
≤ L*

1 2 4 3 4
+ t j

≤ 1
2 L*
{

 ≤ 3
2 L *.

Lemma 3
(by observation, can assume number of jobs > m)

13

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …, 2m-1 and
 one job of length m.

11.2 Center Selection

15

center

r(C)

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum
 distance from a site to nearest center is minimized.

site

k = 4

16

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum
 distance from a site to nearest center is minimized.

Notation.
  dist(x, y) = distance between x and y.
  dist(si, C) = min c ∈ C dist(si, c) = distance from si to closest center.
  r(C) = maxi dist(si, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
  dist(x, x) = 0 (identity)
  dist(x, y) = dist(y, x) (symmetry)
  dist(x, y) ≤ dist(x, z) + dist(z, y) (triangle inequality)

17

center
site

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
 plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

18

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
 for a single center, and then keep adding centers so as to reduce the
 covering radius each time by as much as possible.

Remark: arbitrarily bad!

greedy center 1

k = 2 centers site
center

19

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
 farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C)
 apart.
Pf. By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

 C = φ
 repeat k times {
 Select a site si with maximum dist(si, C)
 Add si to C
 }
 return C
}

site farthest from any center

20

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).
Pf. (by contradiction) Assume r(C*) < ½ r(C).
  For each site ci in C, consider ball of radius ½ r(C) around it.
  Exactly one ci* in each ball; let ci be the site paired with ci*.
  Consider any site s and its closest center ci* in C*.
  dist(s, C) ≤ dist(s, ci) ≤ dist(s, ci*) + dist(ci*, ci) ≤ 2r(C*).
  Thus r(C) ≤ 2r(C*). ▪

C*
sites

½ r(C)

ci

ci*
s

≤ r(C*) since ci* is closest center

½ r(C)

½ r(C)

Δ-inequality

21

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) ≤ 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
 problem.

Remark. Greedy algorithm always places centers at sites, but is still
 within a factor of 2 of best solution that is allowed to place centers
 anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Theorem. Unless P = NP, there no ρ-approximation for center-selection
problem for any ρ < 2.

