
Theory of Computer
Algorithms (4005-800-01):

Introduction
Prof. Richard Zanibbi

Course Administrative
Information

Course Web Page

http://www.cs.rit.edu/~rlaz/algorithms20082

Course Syllabus and Tentative Schedule

Available from course web pages; handout

Resources

Additional textbooks/references/URLs listed
on course web pages; some books to be
placed on 2hr reserve in Watson library 2

Why and How do We
Study Algorithms?

How we study algorithms:
Space and Time

The Time-Space Tradeoff

Generally speaking, the more space used to
store information, the less time needed to
compute desired information, and vice versa.

• Simple example: table lookup for exponents,
vs. function computing exponents iteratively

• Depending on the problem, at times we also
want to consider other resources (e.g. power
on mobile devices)

4

Emphasis for Algorithm Analysis:
Worst-Case Time Requirements
Why emphasize time?

In general, unless the space requirements are truly
excessive, we want the fastest algorithm

• Analyses related to time often generalize quite directly to
space and other resource types

• Note: while fast algorithms are useful, speed is not the only
criteria for selecting an algorithm

Worst-case? Why so pessimistic?

Worst-case analyses are useful in practice and provide
guarantees 5

A Benchmark:
Brute-Force Search

Operation

Brute-force search enumerates the set of possible
solutions, and checks each one

• e.g. to sort a list of numbers, generate all permutations until a
sorted list is found

• Note: while inelegant and inefficient, brute-force search is
correct, making it a useful for understanding and comparison

Our Goal

Preserve correctness, while finding faster solutions; apply
knowledge to produce more informed algorithms 6

!"#$"%&"'()*(+,,- !"#$%&'(#)%"*#%*+,-%$)#./0 ./01
1%23$)-.#*4 566789*:$);*<=*<>/?)"> ?"&*1.?$,>0*:=*@>)0>$0%"

!"#$%&'(#$)*+,-.&"/%$)0($
12-3,-/)0425

2 3456'7$8%9(8"4#(:9($6(:;<"'9$=;<(!"#$#%&$&'(0

2 >"'?6'%=;@"(6?$";(<'=A9($8"(47;"(&"$A"";(A8=$(
79(?"=97&4"(=;<(A8=$(79(7%#6997&4"0

2 3456'7$8%7@(%=$8"%=$7@9(#'6B7<"9(=($#)*+#*,
?6'($=4C7;5(=&6:$(#'65'=%(&"8=B76'0

2 >"'?6'%=;@"(79($8"("+--,)"(6?(@6%#:$7;50

2 D8"(4"996;9(6?(#'65'=%(#"'?6'%=;@"(5";"'=47E"(
$6(6$8"'(@6%#:$7;5('"96:'@"90(

2 !#""<(79(?:;F

Measuring Algorithm
Performance

T(n)

The time, in “primitive” computations
needed by an algorithm for input size n
(normally worst-case analysis)

• Primitive computations might be: assembly
instructions, a line of C/Java, a basic operation
in pseudo code (e.g. assignment, addition)

• Goal: machine-independent performance
measure

8

!"#$"%&"'()*(+,,- !"#$%&'(#)%"*#%*+,-%$)#./0 ./0+,
1%23$)-.#*4 566789*:$);*<=*<>/?)"> ?"&*1.?$,>0*:=*@>)0>$0%"

!"#$%&'(&)#)*+%,%

-'.%/01)%,2&123245567

8 A1"7(9 %4:;%2%($;%"(<=(45><';$?%(
<@(4@6(;@#2$(<=(3;A"("0

34,.)5,01)%,2&13<%"$;%"37

8 A1"7(9 ":#"B$"C($;%"(<=(45><';$?%(
<D"'(455(;@#2$3(<=(3;A"("0

8 E""C(4332%#$;<@(<=(3$4$;3$;B45(
C;3$';&2$;<@(<=(;@#2$30

6,%/01)%,2&1&<>237

8 F?"4$(G;$?(4(35<G(45><';$?%($?4$(
G<'H3(=43$(<@(0%/> ;@#2$0

Efficient Algorithms
Polynomial Time Algorithm

If there exist constants c and d (c, d > 0) such that
running time is bounded by cnd for all input sizes (n)

Efficient Algorithm (Page 33 K&T)

An algorithm is efficient if it has a polynomial running
time

• This measure (normally) reflects efficiency of algorithms
and tractability of problems in practice

• Problems with polynomial solutions usually require low
order polynomials (e.g. n, n2, n3) 10

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

Example: The Problem
of Stable Matching

(Chapter 1.1, K&T)

Problem Definition

Task

Design a procedure to match individuals in
two sets that is self-enforcing (i.e. stable)

Example

Matching job applicants to employers (e.g. for
co-op positions)

13

Problem Formulation
Issues in the General Case

Asymmetric matching: companies need multiple
employees, applicants need one job

Sizes: we may have a different sized sets

Simplification

Sets to be matched are of the same size, and each
individual is in exactly one match (pair)

All individuals have a preference list ranking matches
with individuals of the other set

14

Matches

Perfect Match

All individuals in both sets (e.g. men and
women) are paired with a unique partner

Stable Match (Our Goal)

A matching that is perfect and stable, where
no two individuals mutually prefer to leave
their matching in order to join together

15

Copyright © 2005 Pearson Addison-Wesley. All rights reserved. 1-2

A Solution:
Gale-Shapley Algorithm

17
Copyright © 2005 Pearson Addison-Wesley. All rights reserved. 1-4

Copyright © 2005 Pearson Addison-Wesley. All rights reserved. 1-3

Properties of the
G-S Algorithm

Upper Bound on Worst-Case Run-time (Performance)

(1.3) G-S Terminates after at most n2 iterations of the while loop

Match Properties (Correctness)

(1.1) Each woman remains engaged from their first proposal, and
the sequence of partners to which she becomes engaged gets
better and better (according to her preference list)

(1.4) If m is free at some point, then there is a woman to whom he
has not proposed

(1.5) The set S returned at termination is a perfect matching

(1.6) The set S returned at termination is a stable matching
19

Additional Properties

(1.7) Every execution of the G-S algorithm yields the
same matching S*, where S* = {(m, best(m)) : m ε M)}.

(1.8) In stable matching S*, each woman is paired with
her worst valid partner

valid partner: partner in a stable matching

best valid partner: highest ranked partner in a stable
matching

20

Overview: Five
Representative Problems

(Chapter 1.2 K&T)

I. Interval Scheduling
Problem

Task

Assign a resource (e.g. lecture
hall) to requests with known time
intervals, maximizing the number
of satisfied requests that do not
conflict

Solved By

Greedy algorithm: sort requests,
then single pass produces solution

22

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

2. Weighted Interval
Scheduling Problem

Modification

Requests have an associated weight vi > 0. New goal is
to maximize weight of satisfied requests that do not
conflict

Special Case

If for all i vi = 1, instance of regular Interval Scheduling
problem

Solved By (not greedy alg!)

Dynamic Programming: build optimal value over all
possible solutions using an efficient table-based strategy 23

3. Bipartite Matching
Problem

Task

Find a the largest set of edges producing
disjoint pairs of nodes in a bipartite graph

• e.g. each x paired with a unique y

Solution (not greedy or dynamic!)

Augmentation: Inductively construct larger
and larger matchings with backtracking
(used in network flow problems)

24

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

4. Independent Set
Problem

Task

Identify max no. of nodes not joined by an
edge in a graph

• Edges represent ‘conflicts’

• Interval scheduling, bipartite matching
instances of I.Set problem

Solution (general case)

No efficient algorithm believed to exist
(can use brute force). Problem is NP-
complete 25

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

5. Competitive Facility
Location

Task

Two companies take turns selecting locations
(nodes) forming an independent set, trying to
maximize the value of selected nodes. Is
there a strategy for player 2 guaranteeing a
node set with at least value B?

26

Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

(Comp. Facil. Location,
Cont’d)

Solution

No short ‘proof’ for a solution; requires
detailed case analysis (i.e. game traces);
problem is PSPACE-complete (believed
harder than NP-complete problems)

Many game playing and planning problems
belong to PSPACE

27

Asymptotic Order of
Growth
(Section 2.2, K&T)

Asymptotic Complexity
Definition

Characterizes worst-case running time of an
algorithm in the limit, i.e. as input size goes to infinity

• Rate of growth defined as proportional to some function
f(n) (i.e. within a constant multiple of f(n))

• f(n) normally simple (e.g. n2), not a detailed
characterization such as: 1.62n2 + 3.5n + 8

• Consider upper (big ‘O’), lower (Ω), and tight (Θ) bounds

(One) Purpose

Identify sets of algorithms with similar behavior 29

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/*

!"#$%&'&()*+'&,&('+

=012$3$421(56##"'(&261789:

;"(<'4$"(>589(=(=5'5899 4>($?"'"(
"@48$(A218$31$8(? B(,+(8, B(, 86A?(
$?3$(,(! >589(! ?'589 >2'(3CC(8 " 8,/

;"(<'4$"(>589(=(=5'5899 4>($?"'"(
"@48$(A218$31$8(? B(,+(8, B(, 86A?(
$?3$(,(! >589(! ?'589 >2'(3CC(8 " 8,/

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/0

!"#$%&'&()*+'&,&('+

=123$4$532(67##"'(&37289:;

<"(='5$"(>68:(>(=6'68:: 5?($@"'"(
"A59$(B329$42$9(? C(,+(8, C(, 97B@(
$@4$(,(! >68:(! ?'68: ?3'(4DD(8 " 8,/

<"(='5$"(>68:(>(=6'68:: 5?($@"'"(
"A59$(B329$42$9(? C(,+(8, C(, 97B@(
$@4$(,(! >68:(! ?'68: ?3'(4DD(8 " 8,/

-.!/01-2 *8* >(=680: 6? >()+(8, >(*:

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/-

!"#$%&'&()*+'&,&('+

=012$3$421(56##"'(&261789:

;"(<'4$"(>589(=(=5'5899 4>($?"'"(
"@48$(A218$31$8(? B(,+(8, B(, 86A?(
$?3$(,(! >589(! ?'589 >2'(3CC(8 " 8,/

;"(<'4$"(>589(=(=5'5899 4>($?"'"(
"@48$(A218$31$8(? B(,+(8, B(, 86A?(
$?3$(,(! >589(! ?'589 >2'(3CC(8 " 8,/

-.!/01-2 *8* =(=58D9 5? =()+(8, =(*9

>@8?)&"8;A*
8")*B7:@5;

>@88$A*C"85/D7$E
5F@7:&)$

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/0

!"#$%"&'('#')($)&$*+()#,#')(

=1'1822 3(4(>182(5 $6"'"("789$(:;<9$=<$9(
? >(,+(8, >(, 9?:6(
$6=$(,(! >182(! ?'182
@;'(=AA(8 " 8, B

=1'1822 3(4(>182(5 $6"'"("789$(:;<9$=<$9(
? >(,+(8, >(, 9?:6(
$6=$(,(! >182(! ?'182
@;'(=AA(8 " 8, B

-./012-3 *8* # =18C2

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/),

!"#$%&'()'*+*(*+%,

!"#$%#&'"#(0(1"$(23(4(56'%784('"#'"1"3$1(
43(43639%671(573:$263(23($;"(1"$/

=<8=(>(8? @(><8*=(

%"431(

=<8=(>(8? @((<8=

56'(16%"((<8=(! ><8*= /

-./!01-2

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/))

!"#$%&'()'*+*(*+%,

!"#$%#&'"#(0(1"$(23(4(56'%784('"#'"1"3$1(
43(43639%671(573:$263(23($;"(1"$/

8* <(==8>(?(==8*>

%"431

56'(439(>=8>(! ==8>@

8* <(>=8>(?((=8>

56'(16%"((=8>(! ==8*> /

-./!01-2

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/)0

!!"#$%$&#"'()#*+,'-#."/01

=123$4$532(56(42(>##5%/?">89 23$4$532/((7$(
%48"6(23(6"26"($3(649(@:8; 56(4$(<"46$(=:8*;/

!"':8;; =(>(@:8;(? $@"'"("A56$(B326$42$6(
A C(,+(8, C(, 6DB@(
$@4$(,(# A':8;(# @:8;
E3'(4<<(8 $ 8, F

!"':8;; =(>(@:8;(? $@"'"("A56$(B326$42$6(
A C(,+(8, C(, 6DB@(
$@4$(,(# A':8;(# @:8;
E3'(4<<(8 $ 8, F

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/)0

!!"#$%$&#"'()#*+,'-#."/01

=123$4$532(56(42(>##5%/?">89 23$4$532/((7$(
%48"6(23(6"26"($3(649(@:8; 56(4$(<"46$(=:8*;/

!"':8;; =(>(@:8;(? $@"'"("A56$(B326$42$6(
A C(,+(8, C(, 6DB@(
$@4$(,(# A':8;(# @:8;
E3'(4<<(8 $ 8, F

!"':8;; =(>(@:8;(? $@"'"("A56$(B326$42$6(
A C(,+(8, C(, 6DB@(
$@4$(,(# A':8;(# @:8;
E3'(4<<(8 $ 8, F

23456728 :A =()+(8, =()G;;:<H88 !%

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/)-

!!"#$%$&#"'($&)*$'+#,"-./

!"'0811(2(30'0811((# $0'0811!"'0811(2(30'0811((# $0'0811

f(n) = Θ(g(n)) means that both f(n) = O(g(n))
and f(n) = Ω(g(n))

!"#$"%&"'()*+(*,,- !"#$%&'()*+ ,--./0*1%&2*34*3567&85*789*!(7%:5;*14*<5&;5%;"8 .*/)0

!!"#$%$&#"'($&)*$'+#,"-./

!"'1822(3(41'1822((# $1'1822!"'1822(3(41'1822((# $1'1822

21* **

*

)
888 !%&01234506

f(n) = Θ(g(n)) means that both f(n) = O(g(n))
and f(n) = Ω(g(n))

!"#$"%&"'()*(+,,- !"#$%&'(#)%"*#%*+,-%$)#./0 ./0++
1%23$)-.#*4 566789*:$);*<=*<>/?)"> ?"&*1.?$,>0*:=*@>)0>$0%"

Θ!"#$%$&#"

1 2'3#(43563'7"'($"'%89(:;<3'"(4"=7:<;(>3<8$=<$80

1 ?@=%#4"A(B"B(C(D,"5 E -" C(F,GF(H(ΘI"BJ

!"#$%
ΘI-I"JJ(H(K(A*I"J A $L"'"("@:8$(#38:$:M"(>3<8$=<$8((/*((+*(=<7(

", 8N>L($L=$(,(≤ (/(-I"J(≤ A*I"J(≤ (+(-I"J
O3'(=44(" ≥ ", P

&'()'**+)'(%

!"#$"%&"'()*(+,,- !"#$%&'(#)%"*#%*+,-%$)#./0 ./0+1
1%23$)-.#*4 566789*:$);*<=*<>/?)"> ?"&*1.?$,>0*:=*@>)0>$0%"

!"#$%&'&()*%+,-',$./)+

"

A2"3

",

4 5"(6789:;<=$(>?<8'"(
@6A%#8>B@::A(6:8C"'(
@:?8'>$7%6*(78C"D"'0

4 E"@:FC8':;(;"6>?<(
6>$9@$>8<6(8G$"<(B@::(G8'(@(
B@'"G9:(&@:@<?(8G(
"<?><""'><?(8&H"B$>D"60

4 I6A%#8>B(@<@:A6>6(>6(@(
96"G9:($88:($8(7":#($8(
6$'9B$9'"(89'($7><J><?0

57"<(" ?"$6(:@'?"("<89?7*(@(Θ2"+3 @:?8'>$7%(
?,B?30 &"@$6(@(Θ2"13 @:?8'>$7%0

