Homework

- Homework #3
 - Early submission by Friday
 - Otherwise, due 9/30

Announcements

- Exam 1
 - 1 week from today (Oct 5th)
 - 1 hour
 - Cover Regular Languages (up to and including today’s lecture)
 - Closed book (1 sheet study guide okay)

Before we begin

- Any questions?

Languages

- Recall.
 - What is a language?
 - What is a class of languages?

Regular Languages

- A language \(L \) is a regular language if there is a DFA, \(M \), such that \(L = \text{L}(M) \).

- A language \(L \) is a regular language if there is an NFA, \(N \), such that \(L = \text{L}(N) \).
The bottom line

Regular Languages

The Burning Question...
- We've looked at a number of regular languages
- I know that you are just dying to know...
 - Is there a language L that is not regular?
- To answer this, we'll use what is known as The Pumping Lemma.

The Pumping Lemma
- Statement of the pumping lemma
 - Let L be a regular language.
 - Then there exists a constant n (which varies for different languages), such that for every string x ∈ L with |x| ≥ n, x can be expressed as x = uvw such that:
 1. |v| > 0
 2. |uv| ≤ n
 3. For all k ≥ 0, the string uv^kw is also in L.

The Pumping Lemma
- What this means
 - For a long enough string x in L:
 1. We can express x as the concatenation of three smaller strings
 2. The middle string can be "pumped" (repeated) any number of times (including 0 = deleting) and the resulting string will be in L.
Proof of the pumping lemma
Since L is regular, there is a FA \(M=(Q,\Sigma,q_0,A,\delta) \) that accepts L.

Assume \(M \) has \(n \) states.

Consider a string \(x \) with \(|x| = m \geq n \).

Express \(x = a_1a_2a_3...a_m \), where each \(a_i \in \Sigma \).

Define \(p_i \) to be the state \(M \) is in after reading \(i \) characters:
\[
p_i = \delta^*(q_0, a_1a_2...a_i)
\]
\[
p_0 = q_0
\]

Let \(x = uvw \)
\[
u = a_1a_2...a_i
\]
\[
v = a_{i+1}a_{i+2}...a_j
\]
\[
w = a_{j+1}a_{j+2}...a_m
\]

Then \(x = uvw \)
\[
u = a_1a_2...a_i
\]
\[
v = a_{i+1}a_{i+2}...a_j
\]
\[
w = a_{j+1}a_{j+2}...a_m
\]

You can loop (pump) on the \(v \) loop 0 or more times and there will still be a path to the accepting state.

So what good is the pumping lemma?
It can be used to answer that burning question:
Is there a language \(L \) that is not regular?

Non-regular languages
Venn-diagram of languages
Is there something out here?
Pumping lemma

- The real strength of the pumping lemma is proving that languages are not regular
 - Proof by contradiction
 - Assume that the language to be tested is regular
 - Use the pumping lemma to come to a contradiction
 - Original assumption about the language being regular is false
 - You cannot prove a language to be regular using the Pumping Lemma!!!!

Pumping lemma

- The Pumping Lemma game
 - To show that a language L is not regular
 - Assume L is regular
 - Choose an “appropriate” string x in L
 - In terms of n (number of states in DFA)
 - Express $x = uvw$ following rules of pumping lemma
 - Show that uv^kw is not in L, for some k
 - The above contradicts the Pumping Lemma
 - Our assumption that L is regular is wrong
 - L must not be regular

Example:

- $L = \{x \in \{0,1\}^* \mid 0^i1^i, i \geq 0\}$
- Ex: 001111, 0011, λ, 00001111
Pumping Lemma

- \(x = uvw = 0^n1^n \)
 - \(00 \ldots 0 11 \ldots 1 \)
 - Since \(|uv| \leq n\), \(uv\) must consist entirely of 0s and, as such, \(v\) must also consist entirely of 0s.
 - \(v = 0^j\) for some \(j \leq n\)

- Let's pump!
 - By the Pumping Lemma
 - \(uv^2w\) is also in \(L\)
 - \(uv^2w = 0^n0^i1^n\)
 - Certainly \(i + 2j + k = n\)
 - \(uv^2w\) has more 0's than 1's
 - Thus \(uv^2w \notin L\) CONTRADICTION!

- We arrived at a contradiction,
 - Thus our original assumption that \(L\) is regular must be incorrect.
 - Thus \(L\) is not regular.

Note that we need to find only 1 string \(x\) that fails in order for the proof by contradiction to work.
- The key is finding the \(x\) that won't work

Questions?

Another Example:
- \(L = \{x \in \{0,1\}^* \mid 0^i x, |x| \leq i\}\)
- Let's play
 - Choose an appropriate string \(x \in L\)
 - Let \(x = 0^n1^n\)
 - Apply Pumping Lemma to \(x\)
 - \(x = uvw\)
 - \(|uv| \leq n\)
 - \(|v| > 0\)

- Since \(|uv| \leq n\), \(uv\) must consist entirely of 0s and, as such, \(v\) must also consist entirely of 0s.
 - \(v = 0^j\) for some \(j \leq n\)
The Pumping Lemma states that if L is a regular language, then there exists a string x such that $x = uvw$ with the properties:

- $|uv| \leq n$,
- $|v| > 0$,
- For all $i, j, k \geq 0$, $uv^iwx^jy^k \in L$.

Let's consider the string $x = 0^n1^n$. By the Pumping Lemma, $uv^iwx^jy^k$ is also in L for all $i, j, k \geq 0$. But this contradicts the assumption that L is regular, as we can find an i such that $uv^0wx^0 \notin L$. Thus, L is not regular.

Non-regular languages

Informal notion of what regular languages can't express:

- Counting and comparing
- Any operation that implies the use of a stack
 - Pal
 - xx^r

Pumping Lemma

Let's try another example:

- $L = \{ \text{palindromes over } \{a,b\} \}$
- $x = a^nb^n$
- $|x| = 2n$
- $|uv| \leq n$,
- $|v| > 0$,
- $uv^iwx^jy^k = a^n(ba)^j$ for some $i, j, k \geq 0$.

Since $|uv| \leq n$, uv must consists entirely of a and, as such, v must also consist entirely of a. Thus, L is not regular, and we have arrived at a contradiction.

Pumping Lemma

Another Example:

- $x = uvw = a^nba^n$
- $aa \ldots a$ b $aa \ldots a$

Since $|uv| \leq n$, uv must consists entirely of a and, as such, v must also consist entirely of a. Thus, L is not regular.
Pumping Lemma

- Let's pump!

By the Pumping Lemma

- uv^2w is also in L
- uv^2w has more than n a's
- Number of a's following b is still n
- Thus uv^2w cannot be a palindrome
- Thus $uv^2w \not\in L$ CONTRADICTION!

We arrived at a contradiction,

- Thus our original assumption that L is regular must be incorrect
- Thus L is not regular.

Note that we need to find only 1 string x that fails in order for the proof by contradiction to work.

Questions?

Test for finiteness

- Statement of the pumping lemma
 - Let L be a regular language.
 - Then there exists a constant n (which varies for different languages), such that for every string $x \in L$ with $|x| \geq n$, x can be expressed as $x = uvw$ such that:
 - $|v| > 0$
 - $|uv| \leq n$
 - For all $k \geq 0$, the string uv^kw is also in L.

Test for infiniteness

- First stab
 - The pumping lemma tells us that if there is a string x with length greater than the number of states accepted by an FA, M, then $L(M)$ is infinite.
 - Let's test all strings of length \geq number of states.
 - Will give us a "yes", $L(M)$ is infinite but
 - For $L(M)$ finite, the algorithm will never stop.

How does this help us?

- Algorithm for testing if $L(M)$ is infinite.
 - Systematically generate all strings of length between n and $2n$ where n is the number of states of M
 - Test each string generated
 - If at least 1 is accepted, then $L(M)$ is infinite
 - Otherwise $L(M)$ is finite.
Pumping Lemma

- **Summary**
 - The pumping lemma formalizes the idea that if a string is long enough, eventually at least one state on the DFA will be have to be repeated on the path that accepts the string.
 - Continually looping on this state will produce an infinite number of strings in the language.
 - Used to show that languages are not regular.
 - Has other uses as well.

Non-regular languages

- **Venn-diagram of languages**
 - Is there something out here?
 - Yes

Break

- **After break**
 - Problem Session...

- **Questions?**