
1

Decision and Closure
Properties of CFLs

Now our picture looks like

Regular Languages

Finite
Languages

Deterministic Context Free Languages

Context Free Languages

Closure Properties
 We already seen that CFLs are closed under:

 Union
 Concatenation
 Kleene Star

 Regular Languages are also closed under
 Intersection
 Complementation
 Difference

 What about Context Free Languages?

Closure Properties

 Sorry, Charlie
 CFLs are not closed under intersection

 Meaning:
 If L1 and L2 are CFLs then L1 ∩ L2 is not

necessarily a CFL.

Closure Properties

 CFLs are not closed under intersection
 Example:

 L1 = {aibjck | i < j }
 L2 = {aibjck | i < k }

 Are both CFLs

Closure Properties

 CFLs are not closed under intersection
L2 = {aibjck | i < k
}

S → AC
A → aAc | B
B → bB | ε
C → cC | c

L1 = {aibjck | i < j
}

S → ABC
A → aAb | ε
B → bB | b
C → cC | ε

2

Closure Properties

 CFLs are not closed under intersection
 L1 ∩ L2 = {aibjck | i < j and i < k }

 Which we just showed to be non-context
free.

Closure Properties

 Sorry, Charlie
 CFLs are not closed under complement
 Why?

 L1 ∩ L2 = (L1’ ∪ L2’)’

Closure Properties
 Sorry, Charlie

 CFLs are not closed under difference
 Why?

 L’ = Σ* - L
 We know Σ* is regular, and as such is also a

CFL.
 If CFLs were closed under difference, then Σ* -

L = L’ would always be a CFL
 But we showed that CFLs are not closed under

complement

Closure Properties
 What went wrong?

 Can’t we apply the same construction as
we did for the complement of RLs?

 Reverse the accepting / non-accepting states

 PDAs can “crash”.
 I.e Fail by having no place to go.
 PDAs can “crash” in accepting or non-accepting state
 Making non-accepting states accepting will not

handle crashes.

Closure Properties

 What went wrong?
 Can’t we apply the same construction as

we did for the intersection of RLs?
 The states of M are an ordered pair (p, q)

where p ∈ Q1 and q ∈ Q2

 Informally, the states of M will represent the
current states of M1 and M2 at each
simultaneous move of the machines.

Closure Properties

 What went wrong?
 Can’t we apply the same construction as

we did for the intersection of RLs?
 The problem is the stack.
 Although we could try the same thing for PDAs

and have a combined machine keep track of
where both PDAs are at any one time.

 We can’t keep track of what’s on both stacks at
any given tine.

3

Closure Properties

 However, if one of the CFLs does not
use the stack (I.e. it is an FA), then we
can build a PDA that accepts L1 ∩ L2 .

 In other words:
 If L1 is a context free language and L2 is a

regular language, then L1 ∩ L2 is context
free.

Closure Properties
 Basic idea:

 Like with the FA construction, let the states of the
new machine keep track of the states of the PDA
accepting L1 (M1) and the FA accepting L2 (M2).

 Our single stack of the new machine will operate
the same as the stack of the PDA accepting L1

 Accepting states will be all states that contain both
an accepting state from M1 and M2.

Closure Properties

 Basic idea

Closure Properties

 Summary
 CFLs are closed under

 Union, Concatenation, Kleene Star

 CFLs are NOT closed under
 Intersection, Difference, Complement

 But
 The intersection of a CFL with a RL is a CFL

Decision Properties

 Questions we can ask about context
free languages and how we answer
such questions.

Decision Properties
 Given regular languages, specified in any one

of the four means, can we develop algorithms
that answer the following questions:

1. Is a given string in the language?
2. Is the language empty?
3. Is the language finite?

4

Decision Properties

 Membership
 Unlike FAs, we can’t just run the string

through the machine and see where it goes
since PDAs are non-deterministic.

 Must consider all possible paths

Decision Properties
 Membership

 Instead, start with your grammar in CNF.
 The proof of the pumping lemma states that

the longest derivation path of a string of size n
will be 2n – 1.

 Systematically generate all derivations with one
step, then two steps, …, then 2n – 1 steps
where the length of the string tested = n. If
one of the derivations derive x, return true,
else return false.

Decision Properties

 Emptiness
 Remove useless symbols and prouductions
 If S is useless, then L(G) is empty.

Decision Properties
 Finiteness

 Just as with RLs, a language is infinite if there is a
string x with length between n and 2n

 With RLs n = number of states in an FA
 With CFLs n = 2p+1 where p is the number of variables in

the CFG

 Systematically generate all strings with lengths between
n and 2n

 Run through membership algorithm
 If one passes, L is infinite, if all fail, L is finite

Decision Properties

 Questions?

Decision Properties

 Sad facts about CFLs
 There is no “algorithm” to determine if,

given a grammar G, G is ambiguous.

 There is no “algorithm” to determine if two
CFGs generate the same language.

5

Summary

 Pumping Lemma for CFLs
 Closure Properties
 Decision Properties

Now our picture looks like

Regular Languages

Finite
Languages

Deterministic Context Free Languages

Context Free Languages

Is there anything out here? YES

Next Time
 Next classes of languages
 However,

 Once again, we start with the machine
rather than the language

 Move beyond simple language acceptance
into the realm of computation.

 Enter…The Turing Machine!!!

