
1

Regular Expressions

Logistics

• Homework
– Homework #1 due today.
– Homework #2

• Exercise 3.1.1 (a,b,c) – pg 89
• Exercise 3.1.4 (a,b,c) – pg 90
• Exercise 3.2.2 (a – d) – pg 106
• Exercise 3.2.4 (a,b,c) – pg 106
• Take the NFA-ε in any part of 3.2.4 and convert to a

DFA.

Questions

• Any questions before we start?

Languages

• Recall.
– What is a language?

– What is a class of languages?

Languages

• A language is a set of strings.

• A class of languages is nothing more than a
set of languages

String Recognition machine

• Given a string and a definition of a
language (set of strings), is the string a
member of the language?

Language
recognition
machine

Input string

YES, string is
in Language

NO, string is
not in
Language

2

Regular Languages

• Today we continue looking at our first class
of languages: Regular languages
– Means of defining: Regular Expressions
– Machine for accepting: Finite Automata

Specifying Languages

• Recall: how do we specify languages?
– If language is finite, you can list all of its strings.

• L = {a, aa, aba, aca}

– Descriptive:
• L = {x | na(x) = nb(x)}

– Using basic Language operations
• L= {aa, ab}* ∪ {b}{bb}*

• Regular languages are described using this last method

Regular Languages

• A regular language over Σ is a language
that can be expressed using only the set
operations of
– Union
– Concatenation
– Kleene Star

Kleene Star Operation

• The set of strings that can be obtained by
concatenating any number of elements of a
language L is called the Kleene Star, L*

...432

0

10* LLLLLLL
i

i ∪∪∪∪==
∞

=
U

Note that since, L* contains L0, ε is an
element of L*

Regular Expressions

• Regular expressions are the mechanism by
which regular languages are described:
– Take the “set operation” definition of the

language and:
• Replace ∪ with +
• Replace {} with ()

– And you have a regular expression

Regular expressions

(0 + 11)*((11)* + 101 + ε){0, 11}*({11}* ∪ {101, ε})

(10 + 11 + 01)*{10, 11, 01}*

(110)*(0+1){110}*{0,1}
0 + 01{0, 01}
0 + 1{0,1}

011{011}
ε{ε}

3

Regular Expression

• Recursive definition of regular languages /
expression over Σ :

1. ∅ is a regular language and its regular
expression is ∅

2. {ε} is a regular language and ε is its regular
expression

3. For each a ∈ Σ, {a} is a regular language and
its regular expression is a

Regular Expression

4. If L1 and L2 are regular languages with regular
expressions r1 and r2 then

-- L1 ∪ L2 is a regular language with regular expression
(r1 + r2)

-- L1L2 is a regular language with regular expression
(r1r2)

-- L1
* is a regular language with regular expression (r1

*)

Only languages obtainable by using rules 1-4 are regular
languages.

Regular Expressions

• Some shorthand
– If we apply precedents to the operators, we can

relax the full parenthesized definition:
• Kleene star has highest precedent
• Concatenation had mid precedent
• + has lowest precedent

– Thus
• a + b*c is the same as (a + ((b*)c))
• (a + b)* is not the same as a + b*

Regular Expressions

• More shorthand
– Equating regular expressions.

• Two regular expressions are considered equal if they
describe the same language

• 1*1* = 1*

• (a + b)* ≠ a + b*

Regular Expressions

• Even more shorthand
– Sometimes you might see in the book:

• rn where n indicates the number of concatenations of
r (e.g. r6)

• r+ to indicate one or more concatenations of r.

– Note that this is only shorthand!
– r6 and r+ are not regular expressions.

Regular Expressions

• Important thing to remember
– A regular expression is not a language
– A regular expression is used to describe a

language.

– It is incorrect to say that for a language L,
• L = (a + b + c)*

– But it’s okay to say that L is described by
• (a + b + c)*

4

Regular Expressions

• Questions?

Examples of Regular Languages

• All finite languages are regular
– Can anyone tell me why?

Examples of Regular Languages

• All finite languages are regular
– A finite language L can be expressed as the

union of languages each with one string
corresponding to a string in L

– Example:
• L = {a, aa, aba, aca}
• L = {a} ∪ {aa} ∪ {aba} ∪ {aca}
• Regular expression: (a + aa + aba + abc)

Examples of Regular Languages

• L = {x ∈ {0,1}* | |x| is even}
– Any string of even length can be obtained by

concatenating strings length 2.
– Any concatenation of strings of length 2 will be even
– L = {00, 01, 10, 11}*

– Regular expressions describing L:
• (00 + 01 + 10 + 11)*

• ((0 + 1)(0 + 1))*

Examples of Regular Languages

• L = {x ∈ {0,1}* | x does not end in 01 }
– If x does not end in 01, then either

• |x| < 2 or
• x ends in 00, 10, or 11

– A regular expression that describes L is:
• ε + 0 + 1 + (0 + 1)*(00 + 10 + 11)

Examples of Regular Languages

• L = {x ∈ {0,1}* | x contains an odd number
of 0s }
– Express x = yz
– y is a string of the form y=1i01j

– In z, there must be an even number of
additional 0s or z = (01k01m)*

– x can be described by (1*01*)(01*01*)*

– Questions?

5

Useful properties of regular expressions

• Commutative
– L + M = M + L

• Associative
– (L + M) + N = L + (M + N)
– (LM)N = L(MN)

• Identities
– ∅ + L = L + ∅ = L

– εL = L ε = L
– ∅L = L ∅ = ∅

Useful properties of regular expressions

• Distributed
– L (M + N) = LM + LN
– (M + N)L = ML + NL

• Idempotent
– L + L = L

Useful properties of regular expressions

• Closures
– (L*)* = L*

– ∅* = ε
–ε* = ε
–L+ = LL*

–L* = L+ + ε

Practical uses for regular expressions

• grep
– Global (search for) Regular Expressions and

Print
– Finds patterns of characters in a text file.

– grep man foo.txt
– grep [ab]*c[de]? foo.txt

Practical uses for regular expressions

• How a compiler works

Stream
of tokens

Parse

Tree

Object
code

lexer parser codegen

Source
file

Practical uses for regular expressions

• How a compiler works
– The Lexical Analyzer (lexer) reads source code

and generates a stream of tokens
– What is a token?

• Identifier
• Keyword
• Number
• Operator
• Punctuation

6

Practical uses for regular expressions

• How a compiler works
– Tokens can be described using regular

expressions!

Examples of Regular Languages

• L = set of valid C keywords
– This is a finite set
– L can be described by

• if + then + else + while + do + goto + break + switch
+ …

Examples of Regular Languages

• L = set of valid C identifiers
– A valid C identifier begins with a letter or _
– A valid C identifier contains letters, numbers,

and _
– If we let:

• l = {a , b , … , z , A , B , … , Z}
• d = {1 , 2 , … , 9 , 0}

– Then a regular expression for L:
• (l + _)(l + d + _)*

Practical uses for regular expressions

• lex
– Program that will create a lexical analyzer.
– Input: set of valid tokens
– Tokens are given by regular expressions.

Summary
• Regular languages can be expressed using only the set

operations of union, concatenation, Kleene Star.
• Regular languages

– Means of describing: Regular Expression
– Machine for accepting: Finite Automata

• Practical uses
– Text search (grep)
– Compilers / Lexical Analysis (lex)

• Questions?
• Break time!

