Regular Expressions

Logistics

* Homework
— Homework #1 due today.
— Homework #2
« Exercise 3.1.1 (a,b,c) — pg 89
* Exercise 3.1.4 (a,b,c) — pg 90
« Exercise 3.2.2 (a—d) — pg 106
« Exercise 3.2.4 (a,b,c) — pg 106

* Take the NFA-¢ in any part of 3.2.4 and convert to a
DFA.

Questions

» Any questions before we start?

Languages

* Recall.
— What is a language?

— What is a class of languages?

Languages

« A language is a set of strings.

« A class of languages is nothing more than a
set of languages

String Recognition machine

 Given a string and a definition of a
language (set of strings), is the string a
member of the language?
YES, string is

in Language
Language /

Input string —{ recognition

B - NO, stringis

notin
Language

Regular Languages

» Today we continue looking at our first class
of languages: Regular languages
— Means of defining: Regular Expressions
— Machine for accepting: Finite Automata

Specifying Languages

 Recall: how do we specify languages?
— If language is finite, you can list all of its strings.

« L={a, aa, aba, aca}
— Descriptive:
o L={xIn(x)=n,()}

— Using basic Language operations

« L= {aa, ab}" U {b}{bb}"

« Regular languages are described using this last method

Regular Languages

A regular language over X is a language
that can be expressed using only the set
operations of

— Union
— Concatenation
— Kleene Star

Kleene Star Operation

The set of strings that can be obtained by

concatenating any number of elements of a
language L is called the Kleene Star, L*

U=JU=Luvlul?ullul’.

i=0

g Note that since, L*contains L°, € is an

element of L”

Regular Expressions

 Regular expressions are the mechanism by
which regular languages are described:
— Take the “set operation” definition of the
language and:
 Replace L with +
 Replace {} with ()
— And you have a regular expression

Regular expressions

{e} €

{011} 011

0.1} 0+1

{0, 01} 0+01
{110}{0,1} (110)*(0+1)

{10, 11, 01}* (10 + 11 + 01)"
{0, 1Y {11} U {101, €}) |(0+10)((11) + 101 + &)

Regular Expression

« Recursive definition of regular languages /
expression over X :

1. Oisaregular language and its regular
expression is &

2. {e} isaregular language and ¢ is its regular
expression

3. Foreacha e Z, {a} is aregular language and
its regular expression is a

Regular Expression

4. 1f L, and L, are regular languages with regular
expressions r, and r, then

-- L, uL, is aregular language with regular expression
(rp+r)

-- L,L, is a regular language with regular expression
(riry)

-- L,"is aregular language with regular expression (r,")

Only languages obtainable by using rules 1-4 are regular
languages.

Regular Expressions

* Some shorthand

— If we apply precedents to the operators, we can
relax the full parenthesized definition:
« Kleene star has highest precedent
« Concatenation had mid precedent
« + has lowest precedent
— Thus
* a+ b’cis the same as (a + ((b")c))
e (a+b)"isnotthe same asa+b”

Regular Expressions

* More shorthand

— Equating regular expressions.

« Two regular expressions are considered equal if they
describe the same language

e 111r=10
e (@a+th)y#a+bh”

Regular Expressions

» Even more shorthand

— Sometimes you might see in the book:

« r"where n indicates the number of concatenations of
r(e.g. r%)
« r*to indicate one or more concatenations of r.

— Note that this is only shorthand!
—réand r* are not regular expressions.

Regular Expressions

* Important thing to remember
— A regular expression is not a language

— A regular expression is used to describe a
language.

— Itis incorrect to say that for a language L,
eL=(@+b+c)

— But it’s okay to say that L is described by
e (@a+b+c)

Regular Expressions

* Questions?

Examples of Regular Languages

« All finite languages are regular
— Can anyone tell me why?

Examples of Regular Languages

« All finite languages are regular

— A finite language L can be expressed as the
union of languages each with one string
corresponding to a string in L
Example:

« L ={a, aa, aba, aca}

e L ={a} u{aa} u {aba} U {aca}

« Regular expression: (a + aa + aba + abc)

Examples of Regular Languages

o L={xe{0,1}"||xis even}
— Any string of even length can be obtained by
concatenating strings length 2.
— Any concatenation of strings of length 2 will be even
- L={00, 01,10, 11}

— Regular expressions describing L:
« (00 +01+10+11)"
* (0+D(O+1)

Examples of Regular Languages

e L={x e {0,1}" | x does notend in 01 }
— If x does not end in 01, then either
e [xj<2o0r
« x ends in 00, 10, or 11
— A regular expression that describes L is:

eg+0+1+(0+1)"(00+ 10+ 11)

Examples of Regular Languages

» L={x e {0,1}" | x contains an odd number
of Os }

— Express x =yz
-y is astring of the form y=1i01i

— In z, there must be an even number of
additional Os or z = (01k01m)*

— x can be described by (1*01)(01*01%)"

— Questions?

Useful properties of regular expressions

» Commutative
-L+M=M+L

» Associative
- (L+M)+N=L+(M+N)
— (LM)N = L(MN)

* ldentities
- J+L=L+@=L
—eL=Le=L
-OL=LO=Q

Useful properties of regular expressions

« Distributed
-L(M+N)=LM+LN
- (M+N)L=ML+NL

* Idempotent
-L+L=L

Useful properties of regular expressions

* Closures
(LY=L
-g'=¢
-g'=¢
—-L*=LL"
-L"=L*+¢

Practical uses for regular expressions

* grep
— Global (search for) Regular Expressions and
Print

— Finds patterns of characters in a text file.

— grep man foo.txt
— grep [ab]*c[de]? foo.txt

Practical uses for regular expressions

e How a compiler works

ever 50T rser P10 g
_/Tree

Object
Source code
file

Practical uses for regular expressions

« How a compiler works
— The Lexical Analyzer (lexer) reads source code
and generates a stream of tokens
— What is a token?
« ldentifier
« Keyword
* Number
* Operator
« Punctuation

Practical uses for regular expressions

» How a compiler works

— Tokens can be described using regular
expressions!

Examples of Regular Languages

e L =set of valid C keywords
— This is a finite set
— L can be described by

« if + then + else + while + do + goto + break + switch
+ .

Examples of Regular Languages

e L =set of valid C identifiers
— Avalid C identifier begins with a letter or _
— A valid C identifier contains letters, numbers,
and _

— If we let:
«l={a,b,...,z,A,B, ..., 2}
+d={1,2,...,9,0}

— Then a regular expression for L:
s (I+ (0 +d+)"

Practical uses for regular expressions

* lex
— Program that will create a lexical analyzer.
— Input: set of valid tokens
— Tokens are given by regular expressions.

Summary

« Regular languages can be expressed using only the set
operations of union, concatenation, Kleene Star.
« Regular languages
— Means of describing: Regular Expression
— Machine for accepting: Finite Automata
« Practical uses
— Text search (grep)
— Compilers / Lexical Analysis (lex)

Questions?
Break time!

