

Logistics

- Homework
 - Homework #1 due today.
 - Homework #2
 - Exercise 3.1.1 (a,b,c) pg 89
 - Exercise 3.1.4 (a,b,c) pg 90
 - Exercise 3.2.2 (a d) pg 106
 - Exercise 3.2.4 (a,b,c) pg 106
 - Take the NFA-ε in any part of 3.2.4 and convert to a DFA.

Questions

• Any questions before we start?

Languages

- Recall.
 - What is a language?
 - What is a class of languages?

Languages

- A language is a set of strings.
- A class of languages is nothing more than a set of languages

Regular Languages

- Today we continue looking at our first class of languages: Regular languages
 - Means of defining: Regular Expressions
 - Machine for accepting: Finite Automata

Specifying Languages

- Recall: how do we specify languages?
 - If language is finite, you can list all of its strings.
 L = {a, aa, aba, aca}
 - Descriptive:
 - $L = \{x \mid n_a(x) = n_b(x)\}$
 - Using basic Language operations
 - $L=\{aa, ab\}^* \cup \{b\}\{bb\}^*$
 - Regular languages are described using this last method

Regular Languages

- A regular language over Σ is a language that can be expressed using only the set operations of
 - Union
 - Concatenation
 - Kleene Star

Kleene Star Operation

• The set of strings that can be obtained by concatenating any number of elements of a language L is called the Kleene Star, L*

$$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup L^3 \cup L^4 \dots$$

 \blacksquare Note that since, L* contains L⁰, ϵ is an element of L*

Regular Expressions

- Regular expressions are the mechanism by which regular languages are described:
 - Take the "set operation" definition of the language and:
 - Replace \cup with +
 - Replace { } with ()
 - And you have a regular expression

Regular expressions

{3}	3
{011}	011
{0,1}	0 + 1
{0,01}	0 + 01
{110}*{0,1}	(110)*(0+1)
{10, 11, 01}*	$(10 + 11 + 01)^*$
$\{0, 11\}^* (\{11\}^* \cup \{101, \mathbf{\mathcal{E}}\})$	$(0+11)^*((11)^*+101+\varepsilon)$

Regular Expression

- Recursive definition of regular languages / expression over Σ :
 - 1. \emptyset is a regular language and its regular expression is \emptyset
 - 2. $\{\epsilon\}$ is a regular language and ϵ is its regular expression
 - 3. For each $a \in \Sigma$, $\{a\}$ is a regular language and its regular expression is a

Regular Expression

- 4. If L_1 and L_2 are regular languages with regular expressions r_1 and r_2 then
- -- $L_1 \cup L_2$ is a regular language with regular expression $(r_1 + r_2)$
- -- L_1L_2 is a regular language with regular expression (r_1r_2)
- -- ${L_1}^\ast$ is a regular language with regular expression ${(r_1}^\ast)$

Only languages obtainable by using rules 1-4 are regular languages.

Regular Expressions

- · Some shorthand
 - If we apply precedents to the operators, we can relax the full parenthesized definition:
 - Kleene star has highest precedent
 - · Concatenation had mid precedent
 - $\bullet\,$ + has lowest precedent
 - Thus
 - $a + b^*c$ is the same as $(a + ((b^*)c))$
 - $(a + b)^*$ is not the same as $a + b^*$

Regular Expressions

- More shorthand
 - Equating regular expressions.
 - Two regular expressions are considered equal if they describe the same language
 - $1^*1^* = 1^*$
 - $(a+b)^* \neq a+b^*$

Regular Expressions

- Even more shorthand
 - Sometimes you might see in the book:
 - r^n where n indicates the number of concatenations of r (e.g. $r^6)$
 - $r^{\scriptscriptstyle +}$ to indicate one or more concatenations of r.
 - Note that this is only shorthand!
 - r^{6} and r^{+} are <u>not</u> regular expressions.

Regular Expressions

- Important thing to remember
 - A regular expression is <u>not</u> a language
 - A regular expression is used to <u>describe</u> a language.
 - It is incorrect to say that for a language L, • $L = (a + b + c)^*$
 - But it's okay to say that L is described by • $(a + b + c)^*$

Regular Expressions

• Questions?

Examples of Regular Languages

• All finite languages are regular - Can anyone tell me why?

Examples of Regular Languages

- All finite languages are regular
 - A finite language L can be expressed as the union of languages each with one string corresponding to a string in L
 - Example:
 - L = {a, aa, aba, aca}
 - $\bullet \ L = \{a\} \cup \{aa\} \cup \{aba\} \cup \{aca\}$
 - Regular expression: (a + aa + aba + abc)

Examples of Regular Languages

- $L = \{x \in \{0,1\}^* \mid |x| \text{ is even}\}$
 - Any string of even length can be obtained by concatenating strings length 2.
 - Any concatenation of strings of length 2 will be even
 - $L = \{00, 01, 10, 11\}^*$
 - Regular expressions describing L: • $(00 + 01 + 10 + 11)^*$
 - $((0+1)(0+1))^*$

Examples of Regular Languages

- $L = \{x \in \{0,1\}^* \mid x \text{ does not end in } 01 \}$
 - If x does not end in 01, then either
 - |x| < 2 or
 - x ends in 00, 10, or 11
 - A regular expression that describes L is:
 - $\varepsilon + 0 + 1 + (0 + 1)^*(00 + 10 + 11)$

Examples of Regular Languages

- L = {x ∈ {0,1}* | x contains an odd number of 0s }
 - Express x = yz
 - y is a string of the form $y=1^i01^j$
 - In z, there must be an even number of additional 0s or $z = (01^k 01^m)^*$
 - $x \text{ can be described by } (1^*01^*)(01^*01^*)^*$
 - Questions?

Useful properties of regular expressions

- Distributed

 L (M + N) = LM + LN
 (M + N)L = ML + NL

 Idempotent
 - -L+L=L

Useful properties of regular expressions

- Closures
 - $-(L^*)^* = L^*$
 - $\emptyset^* = \varepsilon$
 - $-\epsilon^* = \epsilon$ $-L^+ = LL^*$
 - $-L^* = L^+ + \varepsilon$

- grep man foo.txt
- grep [ab]*c[de]? foo.txt

Practical uses for regular expressions

- How a compiler works
 - Tokens can be described using regular expressions!

Examples of Regular Languages

- L = set of valid C keywords
 - This is a finite set
 - L can be described by
 - if + then + else + while + do + goto + break + switch + ...

Examples of Regular Languages

- L = set of valid C identifiers
 - A valid C identifier begins with a letter or _
 - A valid C identifier contains letters, numbers,
 - and _
 - If we let:
 - $l = \{a, b, ..., z, A, B, ..., Z\}$

•
$$d = \{1, 2, ..., 9, 0\}$$

- Then a regular expression for L: $(1 + 1)(1 + 1 + 1)^*$
 - $(l + _)(l + d + _)^*$

Practical uses for regular expressions

- lex
 - Program that will create a lexical analyzer.
 - Input: set of valid tokens
 - Tokens are given by regular expressions.

Summary

- Regular languages can be expressed using only the set operations of union, concatenation, Kleene Star.
- Regular languages
 - Means of describing: Regular Expression
 Machine for accepting: Finite Automata
- Practical uses
 - Text search (grep)
 - Compilers / Lexical Analysis (lex)
- Questions?
- · Break time!