Kleene Theorem I

Regular Languages

- Today we continue looking at our first class of languages: Regular languages
 - Means of defining: Regular Expressions
 - Machine for accepting: Finite Automata

Kleene Theorem

- A language L over Σ is regular iff there exists an FA that accepts L.
 - 1. If L is regular there exists an FA M such that L = L(M)
 - For any FA, M, L(M) is regular L(M), the language accepted by the FA can be expressed as a regular expression.

Proving Kleene Theorem

- Approach
 - Define 2 variants of the Finite Automata
 - Nondeterministic Finite Automata (NFA)
 - Nondeterministic Finite Automata with ϵ transitions (ϵ -NFA)
 - Prove that FA, NFA, and ϵ -NFA are equivalent w.r.t. the languages they accept
 - For a regular expression, build a ϵ -NFA that accepts the same language
 - For a DFA build a regular expression that describes the language accepted by the DFA.

Proving Kleene Theorem

- We already showed the equivalence of DFA, NFA, and ε -NFA
- Left to do
 - Given a RE, find a DFA that accepts the language described by the RE
 - Actually find a ε -NFA
 - Given a DFA, find an RE that describes the language accepted by the DFA

Proving Kleene Theorem

- Today:
 - Given a RE, find a DFA that accepts the language described by the RE
 - Actually find a ϵ -NFA
- Thursday:
 - Given a DFA, find a RE that describes the language accepted by the DFA

1

Theory Hall of Fame

- <u>Steven Cole Kleene</u>
 - 1909-1994
 - b. Hartford, Conn.
 - PhD Princeton (1934)
 - Prof at U of Wisc at Madison (1935 – 1979)
 - Introduced Kleene Star op
 - Defined regular expressions
 - Anyone with a Theorem named after him/her gets in the THOF!

Pt 1: RE -> DFA

- Since ε -NFA are equivalent to DFA w.r.t the class of languages they accept
 - We can, given an RE, build an ϵ -NFA instead of an DFA that accepts the language described by the RE
 - We can always then convert that E -NFA to an equivalent DFA (using the algorithms presented last week)

Regular Expression

- Recursive definition of regular languages / expression over Σ :
 - 1. \emptyset is a regular language and its regular expression is \emptyset
 - 2. $\{ \epsilon \}$ is a regular language and ϵ is its regular expression
 - 3. For each $a \in \Sigma$, $\{a\}$ is a regular language and its regular expression is a

Regular Expression

- 4. If L_1 and L_2 are regular languages with regular expressions r_1 and r_2 then
- -- $L_1 \cup L_2$ is a regular language with regular expression $(r_1 + r_2)$
- -- $L_1 L_2$ is a regular language with regular expression $(r_1 r_2)$
- -- L_1^* is a regular language with regular expression (r_1^*)

Only languages obtainable by using rules 1-4 are regular languages.

RE -> DFA

- Induction Hypothesis:
 - $L_1 = L(M_1)$ where $M_1 = (Q_1, \Sigma, q_1, \delta_1, F_1)$
 - $L_2 = L(M_2)$ where $M_2 = (Q_2, \Sigma, q_2, \delta_2, F_2)$
 - Assume Q_1 and Q_2 are disjoint
- Will build
 - $\ M_u = (Q_u,\!\Sigma,\,q_u,\,\delta_u\,,\!F_u) \quad L(M_u) = L_1 + L_2$
 - $\ M_{c} = (Q_{c}, \Sigma, \, q_{c} \, , \, \delta_{c}, \, F_{c}) \quad L(M_{c}) = L_{1}L_{2}$
 - $\ M_k = (Q_k, \Sigma, \, q_k \, , \, \delta_k, \, F_k) \quad L(M_k) = {L_1}^*$

RE -> DFA: Union Basic idea If a string is accepted by either of the existing Ms, it will be accepted by the new M. The set of accepting states of M will include each of the accepting states from M₁ and M₂.

RE -> DFA: Union

- Let's formalize this:
 - $M_u = (Q_u, \Sigma, q_u, \delta_u, F_u)$
 - $\ Q_u = Q_1 \cup Q_2 \cup \{q_u\}$
 - $-F_u = F_1 \cup F_2$
 - Transition function: $\boldsymbol{\delta}_{u}$
 - $\delta_{u}(q_{u}, \epsilon) = \{q_{1}, q_{2}\}$
 - $\delta_u(q_u, a) = \emptyset$ for all $a \in \Sigma$
 - $\bullet \ \delta_{u}\left(q,\,a\right) \ = \delta_{1}\left(q,\,a\right) \quad \text{if} \ q \in Q_{1}$
 - $\bullet \ \ \delta_u\left(q,\,a\right) \ = \delta_2\left(q,\,a\right) \quad if \, q \in Q_2$

RE -> DFA: Concatenation

- Basic idea
 - After being accepted by the first machine, a string will immediately be tested on the 2nd machine
 - The set of accepting states of the new M will be the same as that of the 2nd machine.

RE -> DFA: Concatenation

- Let's formalize this:
 - M_{c} = (Q_{c},\Sigma,\,q_{c}\,,\,\delta_{c},\,F_{c})
 - $Q_c = Q_1 \cup Q_2$
 - $Q_c = q_1$
 - $-F_{c} = F_{2}$

RE -> DFA: Concatenation

- Let's formalize this:
 - Transition function δ_c :
 - $\delta_{c}(q, a) = \delta_{1}(q, a)$ if $q \in Q_{1}$
 - $\bullet \ \delta_{c} \left(q, \, a \right) \, = \delta_{2} \left(q, \, a \right) \, if \, q \, \in \, Q_{2}$
 - For all $q \in F_1, \, \delta_c \, (q, \, \epsilon) = \delta_1 \, (q, \, \epsilon) \cup \{q_2\}$

RE -> DFA: Kleene Star Basic idea Create a new start state Go from new start state to original start state via a ε transition Go from any accepting state back to the new start state via a ε transition

RE -> DFA: Kleene Star

- Basic idea
 - Make new start state the accepting state.
 - Note that you can get from any excepting state to the new start state via a & transition.

RE -> DFA: Summary

- What have we shown:
 - Given a language L described by a regular expression, we can build an ϵ -NFA that accepts L
 - Since ϵ -NFA are equivalent to DFAs, we can, if we wanted to, build an DFA to accept L.
 - Part 1 of the proof is complete.
 - Questions?

Next Time

- Kleene II
 - DFA -> RE
 - Problem Session