Kleene Theorem |

Regular Languages

« Today we continue looking at our first class
of languages: Regular languages
— Means of defining: Regular Expressions
— Machine for accepting: Finite Automata

Kleene Theorem

» Alanguage L over X is regular iff there
exists an FA that accepts L.

1. If Lis regular there exists an FA M such that
L=L(M)
2. Forany FA, M, L(M) is regular

L(M), the language accepted by the FA can be
expressed as a regular expression.

Proving Kleene Theorem

« Approach

— Define 2 variants of the Finite Automata
< Nondeterministic Finite Automata (NFA)

« Nondeterministic Finite Automata with € transitions (€ -NFA)

— Prove that FA, NFA, and € -NFA are equivalent w.r.t.
the languages they accept

— For aregular expression, build a € -NFA that accepts
the same language

— For a DFA build a regular expression that describes the
language accepted by the DFA.

Proving Kleene Theorem

» We already showed the equivalence of
DFA, NFA, and € -NFA
e Lefttodo

— Given a RE, find a DFA that accepts the
language described by the RE
« Actually find a € -NFA

— Given a DFA, find an RE that describes the
language accepted by the DFA

Proving Kleene Theorem

» Today:
— Given a RE, find a DFA that accepts the
language described by the RE
* Actually find a € -NFA
e Thursday:

— Given a DFA, find a RE that describes the
language accepted by the DFA




Theory Hall of Fame

» Steven Cole Kleene
— 1909-1994
— b. Hartford, Conn.

— PhD - Princeton (1934)

— Prof at U of Wisc at Madison
(1935 - 1979)

— Introduced Kleene Star op
— Defined regular expressions

— Anyone with a Theorem named
after him/her gets in the THOF!

Pt1: RE -> DFA

« Since € -NFA are equivalent to DFA w.r.t
the class of languages they accept

— We can, given an RE, build an € -NFA instead
of an DFA that accepts the language described
by the RE

— We can always then convert that € -NFA to an
equivalent DFA (using the algorithms presented
last week)

Regular Expression

» Recursive definition of regular languages /
expression over X :
1. Jisaregular language and its regular
expression is &

2. {€} is aregular language and € is its regular
expression

3. Foreacha e Z, {a} is aregular language and
its regular expression is a

Regular Expression

4. 1f L, and L, are regular languages with regular
expressions r, and r, then
-- L, uL, is aregular language with regular expression
(ry+17)
-- L,L, is aregular language with regular expression
(rry)
-- L,"is a regular language with regular expression (r,")

Only languages obtainable by using rules 1-4 are regular
languages.

RE -> DFA

» We will build our € -NFA by structural
induction:

— Base case: Build an € -NFA for @, {€}, and
{a},aecX

0 @ 0@

2 e} ta}

RE -> DFA

— Induction:

« Assume R, and R, are regular expressions that
describe languages L, and L,. Then, by the
induction hypothesis, there exists € -NFA , M, and
M, that accept L, and L,

« Create € -NFA that accept the languages described
by:
-R*+R,
-RiR,
— Rl*




RE -> DFA

* Induction Hypothesis:
- Ly =L(My) where M, = (Q,,Z, q;, 8, , Fy)
- L, =L(M,) where M, = (Q,,%, q,, 8, F,)
* Assume Q, and Q, are disjoint

» Will build
- M=(QuZ, g, 8, ,F) LM)=L;+L,
- M.=(Q.Z qc, &, F) L(M)=L,L,
= M= (QuZ, O, 8 F) LMY =L,

RE -> DFA: Union

* Basic idea

— Using € transitions, create a “branch” where the
machine can either following one branch
(representing one RE) or the other branch
(representing the other RE)

Start state of M j/Q Start state of M,
€

Start state of M,

RE -> DFA: Union

* Basic idea
— If astring is accepted by either of the existing
Ms, it will be accepted by the new M.

« The set of accepting states of M will include each of
the accepting states from M, and M.,.

RE -> DFA: Union

e Let’s formalize this:

- Mu = (Qu!zi qu 1 su' Fu)

- Qu= Qlu QzU{qU}

-F,=F,UF,

— Transition function: g,
* 3, (a4, &) ={ay a2}
«d,(qua)=9 forallaeX
*8,(q.2) =8,(q,8 ifgeQ
°8,(9.2) =5,(0,8 ifgeQ,

RE -> DFA: Union

RE -> DFA: Concatenation

» Basic idea

— Build M to start at the start state of M, and
from any accepting state of M; move directly to

the start state of M, via a € transition.

.00 . -@®

€ -NFA for L, € -NFA for L,




RE -> DFA: Concatenation

» Basic idea

— After being accepted by the first machine, a
string will immediately be tested on the 2nd
machine

« The set of accepting states of the new M will be the
same as that of the 2" machine.

RE -> DFA: Concatenation

* Let’s formalize this:
- Mc = (Qc’Zv Qe 60! Fc)
-Q.=QuQ,

- Qc =0q
- Fc = FZ

RE -> DFA: Concatenation

« Let’s formalize this:
— Transition function &, :
*8.(9,8)=58,(q.a)ifge Q
*5:.(@a) =8, (0,a)ifgeQ,
e Forallq eFy, 8. (g, €) =6, (q, &) v {0}

RE -> DFA: Concatenation

RE -> DFA: Kleene Star

» Basic idea
— Create a new start state

« Go from new start state to original start state viaa €
transition

« Go from any accepting state back to the new start
state via a € transition

RE -> DFA: Kleene Star

* Basic idea
— Make new start state the accepting state.
— Note that you can get from any excepting state
to the new start state via a € transition.




RE -> DFA: Kleene Star

 Let’s formalize this:
= M= (Q.Z, dk, 8 F)
- Q=Q v {a}
- F={a}
— Transition function §,
* & (@a)=5,(q,a)ifge Q
* 8 (9 &) ={a}
*d,(qua)=Q forallae X
* Forallg e Ay, 5, (q,€) =3, (q, &) v {a}

RE -> DFA: Kleene Star

RE -> DFA: Example

 Let’s try an example

— Create an ¢ -NFA for the regular expression:
« (00 + 1)*(10)*

RE -> DFA: Example

« (00 + 1)*(10)*
R

(00 + 1)'(10y°

RE -> DFA: Example
« (00 + 1)*(10)"
OO

%%%@

RE -> DFA: Example
« (00 + 1)*(10)"




RE -> DFA: Example

* (00 + 1)"(10)°

(00 + 1)'(10)°
€ 1 0

RE -> DFA: Example

« (00 +1)*(10)"

e

RE -> DFA: Summary

* What have we shown:
— Given a language L described by a regular expression,
we can build an € -NFA that accepts L

— Since € -NFA are equivalent to DFAs, we can, if we
wanted to, build an DFA to accept L.

— Part 1 of the proof is complete.
— Questions?

Next Time

* Kleene Il
- DFA->RE
— Problem Session




