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Kleene Theorem I

Regular Languages

• Today we continue looking at our first class 
of languages: Regular languages
– Means of defining: Regular Expressions
– Machine for accepting: Finite Automata

Kleene Theorem

• A language L over Σ is regular iff there 
exists an FA that accepts L.

1. If L is regular there exists an FA M such that 
L = L(M)

2. For any FA, M, L(M) is regular
L(M), the language accepted by the FA can be 

expressed as a regular expression.

Proving Kleene Theorem

• Approach
– Define 2 variants of the Finite Automata

• Nondeterministic Finite Automata (NFA)

• Nondeterministic Finite Automata with ε transitions (ε -NFA)

– Prove that FA, NFA, and ε -NFA are equivalent w.r.t. 
the languages they accept

– For a regular expression, build a ε -NFA that accepts 
the same language

– For a DFA build a regular expression that describes the 
language accepted by the DFA.

Proving Kleene Theorem

• We already showed the equivalence of 
DFA, NFA, and ε -NFA

• Left to do
– Given a RE, find a DFA that accepts the 

language described by the RE 
• Actually find a ε -NFA

– Given a DFA, find an RE that describes the 
language accepted by the DFA

Proving Kleene Theorem

• Today:
– Given a RE, find a DFA that accepts the 

language described by the RE 
• Actually find a ε -NFA

• Thursday:
– Given a DFA, find a RE that describes the 

language accepted by the DFA 



2

Theory Hall of Fame

• Steven Cole Kleene
– 1909-1994
– b. Hartford, Conn.

– PhD – Princeton (1934)
– Prof at U of Wisc at Madison 

(1935 – 1979)

– Introduced Kleene Star op
– Defined regular expressions
– Anyone with a Theorem named 

after him/her gets in the THOF! 

Pt 1:  RE -> DFA

• Since ε -NFA are equivalent to DFA w.r.t 
the class of languages they accept
– We can, given an RE, build an ε -NFA instead 

of an DFA that accepts the language described 
by the RE

– We can always then convert that ε -NFA to an 
equivalent DFA (using the algorithms presented 
last week)

Regular Expression

• Recursive definition of regular languages / 
expression over Σ :

1. ∅ is a regular language and its regular 
expression is ∅

2. {ε} is a regular language and ε is its regular 
expression

3. For each a ∈ Σ, {a} is a regular language and 
its regular expression is a

Regular Expression

4. If L1 and L2 are regular languages with regular 
expressions r1 and r2 then

-- L1 ∪ L2 is a regular language with regular expression 
(r1 + r2)

-- L1L2 is a regular language with regular expression 
(r1r2)

-- L1
* is a regular language with regular expression (r1

*)

Only languages obtainable by using rules 1-4 are regular 
languages.

RE -> DFA

• We will build our ε -NFA by structural 
induction:
– Base case: Build an ε -NFA for ∅, {ε} , and 

{a}, a ∈ Σ
a

∅ {ε} {a}

RE -> DFA

– Induction:
• Assume R1 and R2 are regular expressions that 

describe languages L1 and L2.  Then, by the 
induction hypothesis, there exists ε -NFA , M1 and 
M2 that accept L1 and L2

• Create ε -NFA that accept the languages described 
by:

– R1 + R2

– R1 R2

– R1
*
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RE -> DFA

• Induction Hypothesis:
– L1 = L(M1) where M1 = (Q1,Σ, q1, δ1 , F1)
– L2 = L(M2) where M2 = (Q2,Σ, q2 , δ2, F2)

• Assume Q1 and Q2 are disjoint

• Will build
– Mu = (Qu,Σ, qu, δu ,Fu)   L(Mu) = L1 + L2

– Mc = (Qc,Σ, qc , δc, Fc)   L(Mc) = L1L2

– Mk = (Qk,Σ, qk , δk, Fk)   L(Mk) = L1
*

RE -> DFA: Union

• Basic idea
– Using ε transitions, create a “branch” where the 

machine can either following one branch 
(representing one RE) or the other branch 
(representing the other RE)

Start state of M1

Start state of M2

ε

ε

Start state of M

RE -> DFA: Union

• Basic idea
– If a string is accepted by either of the existing 

Ms, it will be accepted by the new M.
• The set of accepting states of M will include each of 

the accepting states from M1 and M2.

RE -> DFA: Union

• Let’s formalize this:
– Mu = (Qu,Σ, qu , δu, Fu)
– Qu = Q1 ∪ Q2 ∪ {qu}
– Fu = F1 ∪ F2

– Transition function: δu

• δu (qu, ε) = {q1, q2}
• δu (qu, a) = ∅ for all a ∈ Σ
• δu (q, a)  = δ1 (q, a)    if q ∈ Q1

• δu (q, a)  = δ2 (q, a)    if q ∈ Q2

RE -> DFA: Union RE -> DFA:  Concatenation

• Basic idea
– Build M to start at the start state of M1 and 

from any accepting state of M1 move directly to 

the start state of M2 via a ε transition.

… …

ε -NFA for L1
ε -NFA for L2

ε
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RE -> DFA:  Concatenation

• Basic idea
– After being accepted by the first machine, a 

string will immediately be tested on the 2nd

machine
• The set of accepting states of the new M will be the 

same as that of the 2nd machine.

RE -> DFA:  Concatenation

• Let’s formalize this:
– Mc = (Qc,Σ, qc , δc, Fc)
– Qc = Q1 ∪ Q2

– Qc = q1

– Fc = F2

RE -> DFA:  Concatenation

• Let’s formalize this:
– Transition function δc :

• δc (q, a) = δ1 (q, a) if q ∈ Q1

• δc (q, a)  = δ2 (q, a) if q ∈ Q2

• For all q ∈F1, δc (q, ε) = δ1 (q, ε) ∪ {q2}

RE -> DFA:  Concatenation

RE -> DFA:  Kleene Star

• Basic idea
– Create a new start state

• Go from new start state to original start state via a ε
transition

• Go from any accepting state back to the new start 
state via a ε transition

…ε

ε

RE -> DFA: Kleene Star

• Basic idea
– Make new start state the accepting state.
– Note that you can get from any excepting state 

to the new start state via a ε transition.
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RE -> DFA: Kleene Star

• Let’s formalize this:
– Mk = (Qk,Σ, qk , δk, Fk)
– Qk = Q1 ∪ {qk}
– Fk = {qk}
– Transition function δk

• δk (q, a) = δ1 (q, a) if q ∈ Q1, 

• δk (qk, ε) = {q1} 
• δu (qu, a) = ∅ for all a ∈ Σ

• For all q ∈ A1, δk (q, ε) = δ1 (q, ε) ∪ {qk} 

RE -> DFA: Kleene Star

RE -> DFA: Example

• Let’s try an example
– Create an ε -NFA for the regular expression:

• (00 + 1)*(10)*

RE -> DFA:  Example

• (00 + 1)*(10)*

0

0 0ε

(00 + 1)*(10)*

RE -> DFA:  Example

• (00 + 1)*(10)*

0 0ε

1
ε

ε

RE -> DFA:  Example

• (00 + 1)*(10)*

0 0ε

1
ε

ε
ε

ε

ε
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RE -> DFA:  Example

• (00 + 1)*(10)*

(00 + 1)*(10)*

1 0ε

1 0εε

ε

RE -> DFA:  Example

• (00 + 1)*(10)*

1 0εε

0 0ε

1
ε

ε
ε

ε

εε

ε

RE -> DFA:  Summary

• What have we shown:
– Given a language L described by a regular expression, 

we can build an ε -NFA that accepts L

– Since ε -NFA are equivalent to DFAs, we can, if we 
wanted to, build an DFA to accept L.

– Part 1 of the proof is complete.
– Questions?

Next Time

• Kleene II 
– DFA -> RE
– Problem Session


