Unrestricted Grammars

Reminder

- Final exam
 - The date for the Final has been decided:
 - Saturday, November 16th
 - -12:30pm-2:30pm
 - -07 1420

Homework

- Homework #7
 - Help after lecture

Announcement

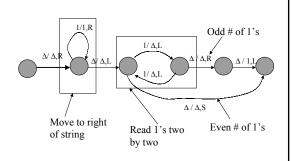
- October 31st (today) is halloween
 - Why isn't anyone dressed as Kleene?!?!
 - Refreshments at CS Offices
 - After this course
 - Remember...valuable prizes.

Plan for today

- Relating CFL to Recursive Languages
 - Unrestricted Grammars

Before We Start

• An example of computing a numerical function with a TM


Computation with Turing Machines

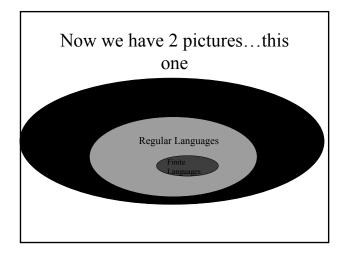
- Computing functions with TMs
 - Formally,
 - Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a TM and let f be a partial function on Σ^* . We say T computes f if for every $x \in \Sigma^*$ where f is defined:
 - $-\;(q_0,\underline{\Delta}x)\mapsto^*(h,\underline{\Delta}f(x))$
 - And for every other x, T fails to halt on input x.

Computation with Turing Machines

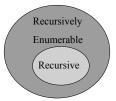
- A TM that computes n mod 2
 - n is input on the tape as a sequence of n 1's
 - Solution will be the number of 1's remaining on the tape when the machine halts.
 - Basic idea:
 - · Machine makes a pass from left to right to first blank.
 - · Move left, "erasing" 1's two at a time
 - If n is odd, a single 1 will be left on the tape
 - Otherwise no 1's will be left on the tape.

Computation with Turing Machines

Computation with Turing Machines


- You know you want to see it...
 - A final JFLAP run

Grammars


• Now back to our regularly scheduled lecture.

Languages

- · You are the weakest link!
 - What is a language?
 - What is a class of languages?

How do these 2 relate

Unrestricted grammars

• To answer this we'll have to take another look at grammars.

Context Free Grammars

- Let's formalize this a bit:
 - A context free grammar (CFG) is a 4-tuple: (V,
 - Σ , S, P) where
 - V is a set of variables
 - Σ is a set of terminals
 - V and Σ are disjoint (I.e. $V \cap \Sigma = \emptyset$)
 - $S \in V$, is your start symbol

Context Free Grammars

- Let's formalize this a bit:
 - Production rules
 - Of the form $A \to \beta$ where
 - $-A \in V$
 - $-\beta \in (V \cup \Sigma)^*$ string with symbols from V and Σ
 - We say that γ can be derived from α in one step:
 - $-A \rightarrow \beta$ is a rule
 - $-\alpha = \alpha_1 A \alpha_2$ $-\gamma = \alpha_1 \beta \alpha_2$
 - $-\alpha \Rightarrow \gamma$

Context Free Grammars

- Let's formalize this a bit:
 - Production rules
 - We say that the grammar is context-free since this substitution can take place regardless of where A is.
 - We write $\alpha \Rightarrow^* \gamma$ if γ can be derived from α in zero or more steps.

Unrestricted Grammars

- With unrestricted grammars, there is no restriction on the length of the left hand side of a production.
- The only rule is that the left hand side must contain at least 1 varaible
 - Example:
 - ABC \rightarrow aB
 - Ba \rightarrow ACA
 - $aAa \rightarrow b$

Unrestricted grammars

- Let's formalize this a bit:
 - An unrestricted (or phase-structure) grammar is a 4-tuple: (V, Σ, S, P) where
 - · V is a set of variables
 - Σ is a set of terminals
 - V and Σ are disjoint (I.e. $V \cap \Sigma = \emptyset$)
 - $S \in V$, is your start symbol

Unrestricted grammars

- Let's formalize this a bit:
 - Production rules
 - Of the form $\alpha \rightarrow \beta$ where
 - α , $\beta \in (V \cup \Sigma)^*$ $\,$ string with symbols from V and Σ
 - α contains at least 1 variable.
 - If $\alpha \to \beta$ is a rule , we say that γ can be derived from α in one step:
 - By replacing a occurrence of α on the right hand side with β

Unrestricted grammar

- Example
 - $-L = \{ a^i b^i c^i \mid i \ge 1 \}$ note: this is not a CFL
 - $-S \rightarrow A_1BCS_1 \mid A_1BC$ (1)
 - $S_1 \rightarrow ABCS_1 \mid ABC \quad (2)$
 - $-BA \rightarrow AB$ (3) $CA \rightarrow AC$ (4)
 - $CB \rightarrow BC$ (5) $cC \rightarrow cc$ (6)
 - $-bC \rightarrow bc$ (7) $bB \rightarrow bb$ (8)
 - $-aB \rightarrow ab$ (9) $aA \rightarrow aa$ (10)
 - $-A_1 \rightarrow a$ (11)

Unrestricted grammar

- Derive aabbcc
 - $-S \to A_1 BC\underline{S}_1 \tag{1}$
 - $\rightarrow A_1 B \bar{CABCS}$ (2)
 - $\rightarrow A_1BCABCABC$ (2)
 - $\rightarrow aBCABCABC$ (11)
 - $\rightarrow aBACBCABC$ (4)
 - $\rightarrow aABCBCABC \qquad (3)$
 - $\rightarrow aABCBACBC$ (4)
 - $\rightarrow aABC\underline{BA}CBC \qquad (4)$ $\rightarrow aAB\underline{CA}BCBC \qquad (3)$
 - \rightarrow aABACBCBC (4

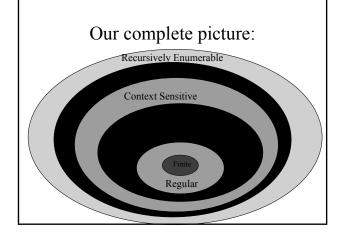
Unrestricted grammar

- Derive aabbcc
 - $\to aA\underline{BA}CBCBC$
 - $\rightarrow aAAB\underline{CB}CBC$ (3)
 - $\rightarrow aAABBC\underline{CB}C$ (5)
 - $\rightarrow aAABB\underline{CB}CC$ (5)
 - $\rightarrow \underline{aA}ABBBCCC \qquad (5)$
- \rightarrow aaABBBCCC \quad (10)
 - $\rightarrow aa\underline{aB}BBCCC$ (10)
 - $\rightarrow aaabBBCCC$ (9)

Unrestricted grammar

- · Derive aabbcc
 - → aaa<u>bB</u>BCCC
 - $\rightarrow aaab\underline{bB}CCC$ (8)
 - $\rightarrow aaabb\underline{bC}CC$ (8)
 - $\rightarrow aaabbb\underline{cC}C$ (7
 - $\rightarrow aaabbbccC$ (6)
 - $\rightarrow aaabbbccc$ (6)
- · Ouestions?

Context Sensitive Grammar


- Context Sensitive Grammars
 - Productions
 - $\alpha \rightarrow \beta$ where α contains at least 1 variable
 - And $|\alpha| \le |\beta|$
 - A variable can only be replaced in the <u>context</u> of other symbols
 - A language derived from a context sensitive grammar is a context sensitive language.
 - The last example was a context sensitive language

Context Sensitive Grammar

- Do Context Sensitive Languages have a corresponding machine?
 - Of course, all language classes do.
 - Linear Bounded Automata
 - · Like a TM except
 - Has two additional symbols (and)
 - The LBA's starting configuration is (q₀, \langle x \rangle)
 - The machine cannot move left of the \langle or right of the \rangle
 - An LBA can only use n cells on the tape where n is the size of the input string.

It can be shown that:

- Every Context Free Language is Context Sensitive
 - By definition of the grammars
- Every Context Sensitive Language is Recursive
 - Minor modification to turn an LBA into a TM that always halts.
- There is a recursive language that is not Context Sensitive
 - One of those strange diagonal type languages.
 - Captain Kirk \rightarrow Robot \rightarrow BOOM.

Context Sensitive Languages

- · Fun facts
 - Context Sensitive Languages are closed under
 - Union, Intersection, and Concatenation...
 - If L is context sensitive, so is $L^{\scriptscriptstyle +}$
 - Complement...Open question for quite some time Turns out to be yes.
 - Still unknown if every CSL can be accepted by a DETERMINISTIC Linear Bounded Automata.

Context Sensitive Languages

- · More fun facts
 - Most "practical" languages are context sensitive.
 - · Programming languages
 - · Spoken languages

It also can be shown:

- Every recursively enumerable language can be generated by an unrestricted grammar.
- In fact, Chomksy (the grammar guy), set out to define the four language classes:
 - Regular, CF, CS, Recursively Enumerable
 - By just using grammars.

Theory Hall of Fame

- Noam Chomsky
 - The Grammar Guy
 - 1928 -
 - b. Philadelphia, PA
 - PhD UPenn (1955)
 - Linguistics
 - Prof at MIT (Linguistics) (1955 - present)
 - Probably more famous for his leftist political views.

Chomsky Hierarchy (1956, 1959)

Туре	Languages (grammars)	Form of productions in grammar	Accepting device
3	Regular	$A \rightarrow aB, A \rightarrow a$ $(A, B \in V, a \in \Sigma)$	Finite automaton
2	Context-free	$A \to \alpha \\ (A \in V, \alpha \in (V \cup \Sigma)^*)$	Pushdown automaton
1	Context-sensitive	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*, \beta \ge \alpha ,$ α contains a variable)	Linear-bounded automaton
0	Recursively enumerable (unrestricted or phrase-structure)	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*,$ α contains a variable)	Turing machine

Summary

- Unrestricted Grammars
- Context Sensitive Grammars
- Linear Bounded Automata
- Chomsky Hierarchy
- Questions?
 - $-\ Next\ time...Computability$