
1

Unrestricted Grammars

Reminder

• Final exam
– The date for the Final has been decided:

– Saturday, November 16th

– 12:30pm – 2:30pm
– 07 – 1420

Homework

• Homework #7
– Help after lecture

Announcement

• October 31st (today) is halloween
– Why isn’t anyone dressed as Kleene?!?!

– Refreshments at CS Offices
• After this course

– Remember…valuable prizes.

Plan for today

• Relating CFL to Recursive Languages
– Unrestricted Grammars

Before We Start

• An example of computing a numerical
function with a TM

2

Computation with Turing Machines

• Computing functions with TMs
– Formally,

• Let T = (Q, Σ, Γ, q0, δ) be a TM and let f be a
partial function on Σ*. We say T computes f if for
every x ∈ Σ * where f is defined:

– (q0, ∆x) a* (h, ∆f(x))

• And for every other x, T fails to halt on input x.

Computation with Turing Machines

• A TM that computes n mod 2
– n is input on the tape as a sequence of n 1’s
– Solution will be the number of 1’s remaining on the

tape when the machine halts.
– Basic idea:

• Machine makes a pass from left to right to first blank.
• Move left, “erasing” 1’s two at a time
• If n is odd, a single 1 will be left on the tape
• Otherwise no 1’s will be left on the tape.

Computation with Turing Machines

∆/ ∆,R
∆/ ∆,L

1/ ∆,L

1/ ∆,L

∆ / ∆,S

∆ / ∆,R ∆ / 1,L

1/1,R

Move to right
of string Read 1’s two

by two
Even # of 1’s

Odd # of 1’s

Computation with Turing Machines

• You know you want to see it…
– A final JFLAP run

Grammars

• Now back to our regularly scheduled
lecture.

Languages

• You are the weakest link!
– What is a language?
– What is a class of languages?

3

Now we have 2 pictures…this
one

Regular Languages

Finite
Languages

Deterministic Context Free Languages

Context Free Languages

And this one…

Recursive

Recursively

Enumerable

How do these 2 relate

Unrestricted grammars

• To answer this we’ll have to take another
look at grammars.

Context Free Grammars

• Let’s formalize this a bit:
– A context free grammar (CFG) is a 4-tuple: (V,

Σ, S, P) where
• V is a set of variables
• Σ is a set of terminals
• V and Σ are disjoint (I.e. V ∩ Σ = ∅)
• S ∈ V, is your start symbol

Context Free Grammars

• Let’s formalize this a bit:
– Production rules

• Of the form A → β where
– A ∈ V
– β ∈ (V ∪ ∑)* string with symbols from V and ∑

• We say that γ can be derived from α in one step:
– A → β is a rule
– α = α1A α2

– γ = α1 β α2

– α ⇒ γ

Context Free Grammars

• Let’s formalize this a bit:
– Production rules

• We say that the grammar is context-free since this
substitution can take place regardless of where A is.

• We write α ⇒ * γ if γ can be derived from α in zero
or more steps.

4

Unrestricted Grammars

• With unrestricted grammars, there is no
restriction on the length of the left hand side
of a production.

• The only rule is that the left hand side must
contain at least 1 varaible
– Example:

• ABC → aB
• Ba → ACA
• aAa → b

Unrestricted grammars

• Let’s formalize this a bit:
– An unrestricted (or phase-structure) grammar is

a 4-tuple: (V, Σ, S, P) where
• V is a set of variables
• Σ is a set of terminals
• V and Σ are disjoint (I.e. V ∩ Σ = ∅)
• S ∈ V, is your start symbol

Unrestricted grammars

• Let’s formalize this a bit:
– Production rules

• Of the form α → β where
– α , β ∈ (V ∪ ∑)* string with symbols from V and ∑
– α contains at least 1 variable.

• If α → β is a rule , we say that γ can be derived
from α in one step:

– By replacing a occurrence of α on the right hand side with
β

Unrestricted grammar

• Example
– L = { aibici | i ≥ 1 } note: this is not a CFL
– S → Α 1BCS1 | A1BC (1)
– S1 → ABCS1 | ABC (2)
– BA → AB (3) CA → AC (4)
– CB → BC (5) cC → cc (6)
– bC → bc (7) bB → bb (8)
– aB → ab (9) aA → aa (10)
– Α 1 → a (11)

Unrestricted grammar

• Derive aabbcc
– S → Α 1BCS1 (1)
– → Α 1BCABCS (2)
– → Α 1BCABCABC (2)
– → aBCABCABC (11)
– → aBACBCABC (4)
– → aABCBCABC (3)
– → aABCBACBC (4)
– → aABCABCBC (3)
– → aABACBCBC (4)

Unrestricted grammar

• Derive aabbcc
– → aABACBCBC
– → aAABCBCBC (3)
– → aAABBCCBC (5)
– → aAABBCBCC (5)
– → aAABBBCCC (5)
– → aaABBBCCC (10)
– → aaaBBBCCC (10)
– → aaabBBCCC (9)

5

Unrestricted grammar

• Derive aabbcc
– → aaabBBCCC
– → aaabbBCCC (8)
– → aaabbbCCC (8)
– → aaabbbcCC (7)
– → aaabbbccC (6)
– → aaabbbccc (6)

• Questions?

Context Sensitive Grammar

• Context Sensitive Grammars
– Productions

• α → β where α contains at least 1 variable
• And | α | ≤ | β |

– A variable can only be replaced in the context
of other symbols

– A language derived fron a context sensitive
grammar is a context sensitive language.

• The last example was a context sensitive language

Context Sensitive Grammar

• Do Context Sensitive Languages have a
corresponding machine ?
– Of course, all language classes do.
– Linear Bounded Automata

• Like a TM except
– Has two additional symbols 〈 and 〉
– The LBA’s starting configuration is (q0, 〈 x 〉)
– The machine cannot move left of the 〈 or right of the 〉
– An LBA can only use n cells on the tape where n is the

size of the input string.

It can be shown that:

• Every Context Free Language is Context Sensitive
– By definition of the grammars

• Every Context Sensitive Language is Recursive
– Minor modification to turn an LBA into a TM that

always halts.

• There is a recursive language that is not Context
Sensitive
– One of those strange diagonal type languages.
– Captain Kirk → Robot → BOOM.

Our complete picture:

Regular

Finite

Deterministic Context Free

Context Free

Context Sensitive

Recursive
Recursively Enumerable

Context Sensitive Languages

• Fun facts
– Context Sensitive Languages are closed under

• Union, Intersection, and Concatenation…
• If L is context sensitive, so is L+

• Complement…Open question for quite some time
– Turns out to be yes.

• Still unknown if every CSL can be accepted by a
DETERMINISTIC Linear Bounded Automata.

6

Context Sensitive Languages

• More fun facts
– Most “practical” languages are context

sensitive.
• Programming languages
• Spoken languages

It also can be shown:

• Every recursively enumerable language can
be generated by an unrestricted grammar.

• In fact, Chomksy (the grammar guy), set out
to define the four language classes:
– Regular, CF, CS, Recursively Enumerable
– By just using grammars.

Theory Hall of Fame

• Noam Chomsky
– The Grammar Guy
– 1928 –
– b. Philadelphia, PA

– PhD – UPenn (1955)
• Linguistics

– Prof at MIT (Linguistics)
(1955 - present)

– Probably more famous for his
leftist political views.

Chomsky Hierarchy (1956, 1959)

Summary

• Unrestricted Grammars
• Context Sensitive Grammars
• Linear Bounded Automata
• Chomsky Hierarchy

• Questions?
– Next time…Computability

