
1

3D Pipeline

Logistics
 Updates on assignments and such:

 Assignment 2: 2D Algorithms
 Most graded

 Assignment 3: OpenGL 3D/Animation
 Grading begun

 Assignment 4: OpenGL Realism
 Due Wednesday, November 7th

 Midterm Pipeline Implementation
 ALL GRADED

 Homework 2: Transformations
 ALL GRADED

 Homework 3: Perspective
 Past due / not graded

 All submissions via mycourses.
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Logistics

 Final exam:
 Wednesday, Nov 14
 During class -- week 11
 Brief review -- Monday Nov 12

Plan
 Small change in plans

 This Week
 3D Pipeline assignment
 Global Illumination

 Next Week: Week 10
 Modeling
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Goal for today’s class

 Review of 3D pipeline
 Complete understanding of the pipeline

 Vertex
 Rasterization

 3D Pipeline assignment.
 OpenGL vs. simplified version

Geometry and Pixels

 Images and geometry flow through separate pipelines that join
at the rasterizer

 Advantage:  visual detail is in the image, not the geometry
 “Complex” textures do not affect geometric complexity

geometry pipelinevertices

pixel pipelineimage

rasterizer
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Vertex Pipeline

 Operates on polygon vertices
 Transform, transform, transform
 The composite matrix.
 Eventually ends in transformation to 2D

device space (integer -- discrete)

The composite matrix

 Single 4x4 Matrix that will take you
from model to device.

 In OpenGL
 Set up before defining polygon vertices
 Each vertex will get transformed by

“current” composite.
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Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

Model Coordinates
 Coordinates system in which the polygon is

defined.

glBegin(GL_TRIANGLES);
   glVertex3f(-1.0f, -0.5f, -4.0f);
   glVertex3f( 1.0f, -0.5f, -4.0f);
   glVertex3f( 0.0f,  0.5f, -4.0f);
glEnd();
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Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

World Coordinates
 Coordinate system of your world.

 Transformations:  Translation, Rotation,
Scaling.
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World Coordinates

 Defining transformations

glTranslatef( tx, ty, tz )
glScalef( sx, sy, sz )
glRotatef( angle, x, y, z )

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC
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View Coordinates

 Sometime called camera coordinates
 World as seen from pov of camera

xz

y

un

v

View transform
 The eyepoint, lookat, and the up vector define the viewing-reference coordinate

system, also known as camera or eye coordinates.
 The default camera orientation has the camera/viewing-reference/eye coordinate

system coincident with the world axes, i.e.,
 Eyepoint at (0, 0, 0)
 Lookat (0, 0, -1)
 Up vector (0, 1, 0) anchored at eyepoint
 Then

 n = eyepoint – lookat is (0, 0, 1) (normalized*)
 u = up x n  is (1, 0, 0) (normalized)
 v = n x u is (0, 1, 0)

 *normalized means a vector of length 1

gluLookAt( eye.x, eye.y, eye.z, lookat.x,
lookat.y, lookat.z, up.x, up.y, up.z )
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World to Camera Coordinate Transformation

 So, we can do something similar in 3D
 Build your own set of world and camera coordinates
 Come up with the four transformations needed to make the axes coincide
 These are the same four transformations that will be applied to all vertices

in the world to get them in terms of camera coordinates
 The composite of these is equivalent to

ux   uy   uz    -u•eyepoint
    vx   vy   vz    -v•eyepoint
    nx   ny   nz    -n•eyepoint
     0     0    0          1

 

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing
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WC VC

Projection
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Projection

 Projecting 3D points onto “film plane”
 Orthographic
 Perspective

Perspective Projection

d

P (x, y, z)X

Z

View
plane

(0,0,0) x’ = ?
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Perspective Projection
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glFrustum(left, right, bottom, top, near, far)

Orthographic Projection
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Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

View Volumes

Orthographic Perspective/Frustum
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Frustum Normalization in OpenGL

Remember that all projections in OpenGL map the view volume to a
2 X 2 X 2 cube.

Orthographic Normalization in OpenGL

All projects in OpenGL map the view volume to a 2 X 2 X 2 cube.
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Normalization

 Converts points in view volume to a
standard canonical space.

Normalization - Ortho

glOrtho(left, right, bottom, top, near, far)
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Normalization - Perspective

glFrustum(left, right, bottom, top, near, far)

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC
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Device (Screen) coords

 Viewport transform
 Transforms points from canonical space to

points on screen

Viewport Transform

 The normalized device coordinates
(x,y),
 -1 ≤ x ≤ +1 and -1 ≤ y ≤ +1, are converted

into pixel coordinates left ≤ xw ≤ left+width
and bottom ≤ yw ≤ bottom+height.

 The z coordinate  -1 ≤ z ≤ +1 is scaled in
the range 0 ≤ zw ≤ 1.
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Viewport Transformation
 The sequence:
 T(umin,vmin) · S(sx,sy) · T(-xmin,-ymin)
 The matrices:
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Viewport Transform

glViewport( left, bottom, width, height )

xw =

yw =

zw =
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Viewport Transformation

 Note that this is a 3D matrix
 To get from 4D to 3D, perform the

homogeneous transform:
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Graphics Vertex Pipeline
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Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation
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Transformation
and Clipping

NC

Viewport
Transformation

DC

Watch the order in which matricies are applied
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At this point…

 You still only have vertices
 All vertices have been converted to

screen coordinates.
 You are ready for rasterization.

 Questions?

Rasterization
 Convert vertices to polygons
 Issues:

 Need to fill interior points
 What color to shade?
 Which polygon to draw at a given pixel?

 We will modify the basic scan line algorithm.
 But first, we’ll need more info at each of the

vertices.
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Shading Models

 Gouraud Shading
 Illumination is interpolated across each

polygon
 Normals required at each polygon vertex,

calculated as an average of the normals of
each face that shares that vertex

 Illumination is calculated for each polygon
vertex

 Interior points interpolated from endpoint
illumination intensities

Shading Models

 Gouraud Shading – interpolating normals

1

2

3

P

54
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Shading Model

 Gouraud Shading

Hwang

Need to maintain

color at each vertex

Calculating color

 Lighting
 Material properties
 Textures
 More info to maintain at each vertex

 Material properties
 Normals
 Texture coords
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Which polygon to render
 From Wikipedia:

 hidden surface determination is the process used to
determine which surfaces and parts of surfaces are not
visible from a certain viewpoint.

 A hidden surface determination algorithm is a solution to the
visibility problem

 the core differences between most rendering algorithms is
how they handle this problem.

Stages of Hidden Surface Determinations

 Viewing Fustrum Culling
 Remove objects not in view volume
 I.e Clipping

 Backface culling
 Remove faces that do not face the camera

 Occlusion Culling
 Determines which portions of objects are hidden by other objects

from a given viewpoint.
 Contribution Culling

 Objects whose screen projection are so small are thrown away.
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Depth (Z) Buffer Algorithm

 Requires two arrays the size of the screen
 Depth – initialized as “far away”
 Color – initialized to background color

 Used in OpenGL

For each polygon,

    For each y,

        For each x ,

            If z < depth[x][y],

                Depth[x][y] = z

                Color[x][y] = polygon color

Basic scan line algorithm
 Must do this for all edges and all scan lines, not just one edge
 Can generalize this to handle arbitrarily complex polygons using

an edge table
 The ET contains all edges, sorted by ymin

 We move edges from ET into an active edge table as we
encounter them

 Note:  our text calls AET the active edge list (AEL)
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Building the Edge Table
 Our figure’s edges:

 AB, BC, CD, DE, EF, FA
 We create a bucket list for

each scan line which indicates
which edge(s) intersect that
scan line

 Each edge is listed only the
first time is is crossed
 E.g., FA will appear for scan

line 3, but not for lines 4-9
 Bucket chains are sorted by

increasing x of the lower
endpoint
 What if multiple buckets have

the same x endpoint?

A = (2,3)      B = (7,1)
C = (13,5)    D = (13,11)
E = (7,7)      F = (2,9)

F

E

D

C

B
A

Edge Table Buckets
 Each bucket contains the following things:

 ymax of the edge
 Current x of the edge

 Initially, x of the vertex with the ymin coordinate

 The x increment (1/m)
 A link to the next bucket

 We build the ET as an array of pointers to buckets, indexed by
scan line number

9 7 -5/2

EF

ymax curx Δx



25

Edge Table Example
φ
φ
φ
φ
φ
φ
φ
φ

φ

φ

φ

φ

9 2 0 FA

9 7 -5/2

EF
11 7 6/4

DE

11 13 0 CD

5 7 6/4

BC

3 7 -5/2

AB

D

C

F

E

B
A

A = (2,3)      B = (7,1)
C = (13,5)    D = (13,11)
E = (7,7)      F = (2,9)

 ymax of the edge
 x of the ymin vertex
 x increment (1/m)

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Fill algorithm
 Form the ET
 Initialize AET to empty
 Set y to the smallest y in the ET which has buckets
 Repeat until both ET and AET are empty:

 Remove AET entries where y = ymax
 Move from ET[y] to AET when ymin = y
 Sort AET on x
 Fill pixels on scan line y using pairs of x coords from AET
 Increment y
 For each non-vertical edge in AET, update x for new y

 How to detect non-vertical edge?
 Look at inverse slope - if 1/m != 0, have non-vertical edge
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Adding to the basic scan line
algorithm

 Add other values to be interpolated to
the edge table buckets
 E.g.

 Z (depth) values
 Colors
 Texture coords

9 7 -5/2

EF

ymax curx Δx

cur z

dz/dx

dz/dy

Questions?
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The FINAL Option

 For the daring…
 Build a 3D pipeline implementing the

vertex and rasterization pipeline presented
today.

The FINAL Option
 Vertex additions

 3D transforms
 Projections (Ortho and Frustrum)
 3D Camera Model
 Perspective divide
 Storage of depth and color at vertices

 CLIPPING in 2D
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The FINAL Option
 Rasterization Additions

 Basic Z-Buffer algorithm
 Z value and color interpolation in scan line

algorithm.
 Gouraud Shading

 NO PHONG Illumination
 NO TEXTURE Mapping

The FINAL Option

 Your own implementation of select
OpenGL / Glu routines.

 Use modified 2D drawing routines from
Midterm / assignment 2

 Only allowed to use setPixel().
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The FINAL Option
 List of functions to implement with

complete write-up (and test program)
by Wednesday.

 Due date:
 Wednesday, November 14th.

 Questions?


