
1

3D Pipeline

Logistics
 Updates on assignments and such:

 Assignment 2: 2D Algorithms
 Most graded

 Assignment 3: OpenGL 3D/Animation
 Grading begun

 Assignment 4: OpenGL Realism
 Due Wednesday, November 7th

 Midterm Pipeline Implementation
 ALL GRADED

 Homework 2: Transformations
 ALL GRADED

 Homework 3: Perspective
 Past due / not graded

 All submissions via mycourses.

2

Logistics

 Final exam:
 Wednesday, Nov 14
 During class -- week 11
 Brief review -- Monday Nov 12

Plan
 Small change in plans

 This Week
 3D Pipeline assignment
 Global Illumination

 Next Week: Week 10
 Modeling

3

Goal for today’s class

 Review of 3D pipeline
 Complete understanding of the pipeline

 Vertex
 Rasterization

 3D Pipeline assignment.
 OpenGL vs. simplified version

Geometry and Pixels

 Images and geometry flow through separate pipelines that join
at the rasterizer

 Advantage: visual detail is in the image, not the geometry
 “Complex” textures do not affect geometric complexity

geometry pipelinevertices

pixel pipelineimage

rasterizer

4

Vertex Pipeline

 Operates on polygon vertices
 Transform, transform, transform
 The composite matrix.
 Eventually ends in transformation to 2D

device space (integer -- discrete)

The composite matrix

 Single 4x4 Matrix that will take you
from model to device.

 In OpenGL
 Set up before defining polygon vertices
 Each vertex will get transformed by

“current” composite.

5

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

Model Coordinates
 Coordinates system in which the polygon is

defined.

glBegin(GL_TRIANGLES);
 glVertex3f(-1.0f, -0.5f, -4.0f);
 glVertex3f(1.0f, -0.5f, -4.0f);
 glVertex3f(0.0f, 0.5f, -4.0f);
glEnd();

6

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

World Coordinates
 Coordinate system of your world.

 Transformations: Translation, Rotation,
Scaling.

!

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

cos! " sin! 0 0

sin! cos! 0 0

0 0 1 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

1 0 0 0

0 cos! " sin! 0

0 sin! cos! 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

cos! 0 sin! 0

0 1 0 0

" sin! 0 cos! 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

translation scaling Rotate x Rotate y Rotate z

7

World Coordinates

 Defining transformations

glTranslatef(tx, ty, tz)
glScalef(sx, sy, sz)
glRotatef(angle, x, y, z)

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

8

View Coordinates

 Sometime called camera coordinates
 World as seen from pov of camera

xz

y

un

v

View transform
 The eyepoint, lookat, and the up vector define the viewing-reference coordinate

system, also known as camera or eye coordinates.
 The default camera orientation has the camera/viewing-reference/eye coordinate

system coincident with the world axes, i.e.,
 Eyepoint at (0, 0, 0)
 Lookat (0, 0, -1)
 Up vector (0, 1, 0) anchored at eyepoint
 Then

 n = eyepoint – lookat is (0, 0, 1) (normalized*)
 u = up x n is (1, 0, 0) (normalized)
 v = n x u is (0, 1, 0)

 *normalized means a vector of length 1

gluLookAt(eye.x, eye.y, eye.z, lookat.x,
lookat.y, lookat.z, up.x, up.y, up.z)

9

World to Camera Coordinate Transformation

 So, we can do something similar in 3D
 Build your own set of world and camera coordinates
 Come up with the four transformations needed to make the axes coincide
 These are the same four transformations that will be applied to all vertices

in the world to get them in terms of camera coordinates
 The composite of these is equivalent to

ux uy uz -u•eyepoint
 vx vy vz -v•eyepoint
 nx ny nz -n•eyepoint
 0 0 0 1

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

10

Projection

 Projecting 3D points onto “film plane”
 Orthographic
 Perspective

Perspective Projection

d

P (x, y, z)X

Z

View
plane

(0,0,0) x’ = ?

11

Perspective Projection

!

Mperspective =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 d 0

"

$
$
$
$

%

&

'
'
'
'

glFrustum(left, right, bottom, top, near, far)

Orthographic Projection

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

glOrtho(left, right, bottom, top, near, far)

12

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

View Volumes

Orthographic Perspective/Frustum

13

Frustum Normalization in OpenGL

Remember that all projections in OpenGL map the view volume to a
2 X 2 X 2 cube.

Orthographic Normalization in OpenGL

All projects in OpenGL map the view volume to a 2 X 2 X 2 cube.

14

Normalization

 Converts points in view volume to a
standard canonical space.

Normalization - Ortho

glOrtho(left, right, bottom, top, near, far)

15

Normalization - Perspective

glFrustum(left, right, bottom, top, near, far)

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

16

Device (Screen) coords

 Viewport transform
 Transforms points from canonical space to

points on screen

Viewport Transform

 The normalized device coordinates
(x,y),
 -1 ≤ x ≤ +1 and -1 ≤ y ≤ +1, are converted

into pixel coordinates left ≤ xw ≤ left+width
and bottom ≤ yw ≤ bottom+height.

 The z coordinate -1 ≤ z ≤ +1 is scaled in
the range 0 ≤ zw ≤ 1.

17

Viewport Transformation
 The sequence:
 T(umin,vmin) · S(sx,sy) · T(-xmin,-ymin)
 The matrices:

=

1 0 xv
min

0 1 yv
min

0 0 1

!

"

#
#
#

$

%

&
&
&

'

xv
max

(xv
min

xw
max

(xw
min

0 0

0
yv

max
(yv

min

yw
max

(yw
min

0

0 0 1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

'

1 0 (xw
min

0 1 (yw
min

0 0 1

!

"

#
#
#

$

%

&
&
&

=

xv
max

! xv
min

xw
max

! xw
min

0 !xw
min
"
xv

max
! xv

min

xw
max

! xw
min

+ xv
min

0
yv

max
! yv

min

yw
max

! yw
min

!yw
min
"
yv

max
! yv

min

yw
max

! yw
min

+ yv
min

0 0 1

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

Viewport Transform

glViewport(left, bottom, width, height)

xw =

yw =

zw =

18

Viewport Transformation

 Note that this is a 3D matrix
 To get from 4D to 3D, perform the

homogeneous transform:

!

x

y

z

w

"

$
$
$
$

%

&

'
'
'
'

(

x
w

y
w

z
w

"

$
$
$

%

&

'
'
'

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

Watch the order in which matricies are applied

19

At this point…

 You still only have vertices
 All vertices have been converted to

screen coordinates.
 You are ready for rasterization.

 Questions?

Rasterization
 Convert vertices to polygons
 Issues:

 Need to fill interior points
 What color to shade?
 Which polygon to draw at a given pixel?

 We will modify the basic scan line algorithm.
 But first, we’ll need more info at each of the

vertices.

20

Shading Models

 Gouraud Shading
 Illumination is interpolated across each

polygon
 Normals required at each polygon vertex,

calculated as an average of the normals of
each face that shares that vertex

 Illumination is calculated for each polygon
vertex

 Interior points interpolated from endpoint
illumination intensities

Shading Models

 Gouraud Shading – interpolating normals

1

2

3

P

54

21

Shading Model

 Gouraud Shading

Hwang

Need to maintain

color at each vertex

Calculating color

 Lighting
 Material properties
 Textures
 More info to maintain at each vertex

 Material properties
 Normals
 Texture coords

22

Which polygon to render
 From Wikipedia:

 hidden surface determination is the process used to
determine which surfaces and parts of surfaces are not
visible from a certain viewpoint.

 A hidden surface determination algorithm is a solution to the
visibility problem

 the core differences between most rendering algorithms is
how they handle this problem.

Stages of Hidden Surface Determinations

 Viewing Fustrum Culling
 Remove objects not in view volume
 I.e Clipping

 Backface culling
 Remove faces that do not face the camera

 Occlusion Culling
 Determines which portions of objects are hidden by other objects

from a given viewpoint.
 Contribution Culling

 Objects whose screen projection are so small are thrown away.

23

Depth (Z) Buffer Algorithm

 Requires two arrays the size of the screen
 Depth – initialized as “far away”
 Color – initialized to background color

 Used in OpenGL

For each polygon,

 For each y,

 For each x ,

 If z < depth[x][y],

 Depth[x][y] = z

 Color[x][y] = polygon color

Basic scan line algorithm
 Must do this for all edges and all scan lines, not just one edge
 Can generalize this to handle arbitrarily complex polygons using

an edge table
 The ET contains all edges, sorted by ymin

 We move edges from ET into an active edge table as we
encounter them

 Note: our text calls AET the active edge list (AEL)

24

Building the Edge Table
 Our figure’s edges:

 AB, BC, CD, DE, EF, FA
 We create a bucket list for

each scan line which indicates
which edge(s) intersect that
scan line

 Each edge is listed only the
first time is is crossed
 E.g., FA will appear for scan

line 3, but not for lines 4-9
 Bucket chains are sorted by

increasing x of the lower
endpoint
 What if multiple buckets have

the same x endpoint?

A = (2,3) B = (7,1)
C = (13,5) D = (13,11)
E = (7,7) F = (2,9)

F

E

D

C

B
A

Edge Table Buckets
 Each bucket contains the following things:

 ymax of the edge
 Current x of the edge

 Initially, x of the vertex with the ymin coordinate

 The x increment (1/m)
 A link to the next bucket

 We build the ET as an array of pointers to buckets, indexed by
scan line number

9 7 -5/2

EF

ymax curx Δx

25

Edge Table Example
φ
φ
φ
φ
φ
φ
φ
φ

φ

φ

φ

φ

9 2 0 FA

9 7 -5/2

EF
11 7 6/4

DE

11 13 0 CD

5 7 6/4

BC

3 7 -5/2

AB

D

C

F

E

B
A

A = (2,3) B = (7,1)
C = (13,5) D = (13,11)
E = (7,7) F = (2,9)

 ymax of the edge
 x of the ymin vertex
 x increment (1/m)

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Fill algorithm
 Form the ET
 Initialize AET to empty
 Set y to the smallest y in the ET which has buckets
 Repeat until both ET and AET are empty:

 Remove AET entries where y = ymax
 Move from ET[y] to AET when ymin = y
 Sort AET on x
 Fill pixels on scan line y using pairs of x coords from AET
 Increment y
 For each non-vertical edge in AET, update x for new y

 How to detect non-vertical edge?
 Look at inverse slope - if 1/m != 0, have non-vertical edge

26

Adding to the basic scan line
algorithm

 Add other values to be interpolated to
the edge table buckets
 E.g.

 Z (depth) values
 Colors
 Texture coords

9 7 -5/2

EF

ymax curx Δx

cur z

dz/dx

dz/dy

Questions?

27

The FINAL Option

 For the daring…
 Build a 3D pipeline implementing the

vertex and rasterization pipeline presented
today.

The FINAL Option
 Vertex additions

 3D transforms
 Projections (Ortho and Frustrum)
 3D Camera Model
 Perspective divide
 Storage of depth and color at vertices

 CLIPPING in 2D

28

The FINAL Option
 Rasterization Additions

 Basic Z-Buffer algorithm
 Z value and color interpolation in scan line

algorithm.
 Gouraud Shading

 NO PHONG Illumination
 NO TEXTURE Mapping

The FINAL Option

 Your own implementation of select
OpenGL / Glu routines.

 Use modified 2D drawing routines from
Midterm / assignment 2

 Only allowed to use setPixel().

29

The FINAL Option
 List of functions to implement with

complete write-up (and test program)
by Wednesday.

 Due date:
 Wednesday, November 14th.

 Questions?

