
1

3D Pipeline

Logistics
 Updates on assignments and such:

 Assignment 2: 2D Algorithms
 Most graded

 Assignment 3: OpenGL 3D/Animation
 Grading begun

 Assignment 4: OpenGL Realism
 Due Wednesday, November 7th

 Midterm Pipeline Implementation
 ALL GRADED

 Homework 2: Transformations
 ALL GRADED

 Homework 3: Perspective
 Past due / not graded

 All submissions via mycourses.

2

Logistics

 Final exam:
 Wednesday, Nov 14
 During class -- week 11
 Brief review -- Monday Nov 12

Plan
 Small change in plans

 This Week
 3D Pipeline assignment
 Global Illumination

 Next Week: Week 10
 Modeling

3

Goal for today’s class

 Review of 3D pipeline
 Complete understanding of the pipeline

 Vertex
 Rasterization

 3D Pipeline assignment.
 OpenGL vs. simplified version

Geometry and Pixels

 Images and geometry flow through separate pipelines that join
at the rasterizer

 Advantage: visual detail is in the image, not the geometry
 “Complex” textures do not affect geometric complexity

geometry pipelinevertices

pixel pipelineimage

rasterizer

4

Vertex Pipeline

 Operates on polygon vertices
 Transform, transform, transform
 The composite matrix.
 Eventually ends in transformation to 2D

device space (integer -- discrete)

The composite matrix

 Single 4x4 Matrix that will take you
from model to device.

 In OpenGL
 Set up before defining polygon vertices
 Each vertex will get transformed by

“current” composite.

5

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

Model Coordinates
 Coordinates system in which the polygon is

defined.

glBegin(GL_TRIANGLES);
 glVertex3f(-1.0f, -0.5f, -4.0f);
 glVertex3f(1.0f, -0.5f, -4.0f);
 glVertex3f(0.0f, 0.5f, -4.0f);
glEnd();

6

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

World Coordinates
 Coordinate system of your world.

 Transformations: Translation, Rotation,
Scaling.

!

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

!

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

cos! " sin! 0 0

sin! cos! 0 0

0 0 1 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

1 0 0 0

0 cos! " sin! 0

0 sin! cos! 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

cos! 0 sin! 0

0 1 0 0

" sin! 0 cos! 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

translation scaling Rotate x Rotate y Rotate z

7

World Coordinates

 Defining transformations

glTranslatef(tx, ty, tz)
glScalef(sx, sy, sz)
glRotatef(angle, x, y, z)

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

8

View Coordinates

 Sometime called camera coordinates
 World as seen from pov of camera

xz

y

un

v

View transform
 The eyepoint, lookat, and the up vector define the viewing-reference coordinate

system, also known as camera or eye coordinates.
 The default camera orientation has the camera/viewing-reference/eye coordinate

system coincident with the world axes, i.e.,
 Eyepoint at (0, 0, 0)
 Lookat (0, 0, -1)
 Up vector (0, 1, 0) anchored at eyepoint
 Then

 n = eyepoint – lookat is (0, 0, 1) (normalized*)
 u = up x n is (1, 0, 0) (normalized)
 v = n x u is (0, 1, 0)

 *normalized means a vector of length 1

gluLookAt(eye.x, eye.y, eye.z, lookat.x,
lookat.y, lookat.z, up.x, up.y, up.z)

9

World to Camera Coordinate Transformation

 So, we can do something similar in 3D
 Build your own set of world and camera coordinates
 Come up with the four transformations needed to make the axes coincide
 These are the same four transformations that will be applied to all vertices

in the world to get them in terms of camera coordinates
 The composite of these is equivalent to

ux uy uz -u•eyepoint
 vx vy vz -v•eyepoint
 nx ny nz -n•eyepoint
 0 0 0 1

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

10

Projection

 Projecting 3D points onto “film plane”
 Orthographic
 Perspective

Perspective Projection

d

P (x, y, z)X

Z

View
plane

(0,0,0) x’ = ?

11

Perspective Projection

!

Mperspective =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 d 0

"

$
$
$
$

%

&

'
'
'
'

glFrustum(left, right, bottom, top, near, far)

Orthographic Projection

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

glOrtho(left, right, bottom, top, near, far)

12

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

View Volumes

Orthographic Perspective/Frustum

13

Frustum Normalization in OpenGL

Remember that all projections in OpenGL map the view volume to a
2 X 2 X 2 cube.

Orthographic Normalization in OpenGL

All projects in OpenGL map the view volume to a 2 X 2 X 2 cube.

14

Normalization

 Converts points in view volume to a
standard canonical space.

Normalization - Ortho

glOrtho(left, right, bottom, top, near, far)

15

Normalization - Perspective

glFrustum(left, right, bottom, top, near, far)

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

16

Device (Screen) coords

 Viewport transform
 Transforms points from canonical space to

points on screen

Viewport Transform

 The normalized device coordinates
(x,y),
 -1 ≤ x ≤ +1 and -1 ≤ y ≤ +1, are converted

into pixel coordinates left ≤ xw ≤ left+width
and bottom ≤ yw ≤ bottom+height.

 The z coordinate -1 ≤ z ≤ +1 is scaled in
the range 0 ≤ zw ≤ 1.

17

Viewport Transformation
 The sequence:
 T(umin,vmin) · S(sx,sy) · T(-xmin,-ymin)
 The matrices:

=

1 0 xv
min

0 1 yv
min

0 0 1

!

"

#
#
#

$

%

&
&
&

'

xv
max

(xv
min

xw
max

(xw
min

0 0

0
yv

max
(yv

min

yw
max

(yw
min

0

0 0 1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

'

1 0 (xw
min

0 1 (yw
min

0 0 1

!

"

#
#
#

$

%

&
&
&

=

xv
max

! xv
min

xw
max

! xw
min

0 !xw
min
"
xv

max
! xv

min

xw
max

! xw
min

+ xv
min

0
yv

max
! yv

min

yw
max

! yw
min

!yw
min
"
yv

max
! yv

min

yw
max

! yw
min

+ yv
min

0 0 1

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

Viewport Transform

glViewport(left, bottom, width, height)

xw =

yw =

zw =

18

Viewport Transformation

 Note that this is a 3D matrix
 To get from 4D to 3D, perform the

homogeneous transform:

!

x

y

z

w

"

$
$
$
$

%

&

'
'
'
'

(

x
w

y
w

z
w

"

$
$
$

%

&

'
'
'

Graphics Vertex Pipeline
Modeling

Transformation
MC Viewing

Transformation
WC VC

Projection
Transformation

PC Normalization
Transformation
and Clipping

NC

Viewport
Transformation

DC

Watch the order in which matricies are applied

19

At this point…

 You still only have vertices
 All vertices have been converted to

screen coordinates.
 You are ready for rasterization.

 Questions?

Rasterization
 Convert vertices to polygons
 Issues:

 Need to fill interior points
 What color to shade?
 Which polygon to draw at a given pixel?

 We will modify the basic scan line algorithm.
 But first, we’ll need more info at each of the

vertices.

20

Shading Models

 Gouraud Shading
 Illumination is interpolated across each

polygon
 Normals required at each polygon vertex,

calculated as an average of the normals of
each face that shares that vertex

 Illumination is calculated for each polygon
vertex

 Interior points interpolated from endpoint
illumination intensities

Shading Models

 Gouraud Shading – interpolating normals

1

2

3

P

54

21

Shading Model

 Gouraud Shading

Hwang

Need to maintain

color at each vertex

Calculating color

 Lighting
 Material properties
 Textures
 More info to maintain at each vertex

 Material properties
 Normals
 Texture coords

22

Which polygon to render
 From Wikipedia:

 hidden surface determination is the process used to
determine which surfaces and parts of surfaces are not
visible from a certain viewpoint.

 A hidden surface determination algorithm is a solution to the
visibility problem

 the core differences between most rendering algorithms is
how they handle this problem.

Stages of Hidden Surface Determinations

 Viewing Fustrum Culling
 Remove objects not in view volume
 I.e Clipping

 Backface culling
 Remove faces that do not face the camera

 Occlusion Culling
 Determines which portions of objects are hidden by other objects

from a given viewpoint.
 Contribution Culling

 Objects whose screen projection are so small are thrown away.

23

Depth (Z) Buffer Algorithm

 Requires two arrays the size of the screen
 Depth – initialized as “far away”
 Color – initialized to background color

 Used in OpenGL

For each polygon,

 For each y,

 For each x ,

 If z < depth[x][y],

 Depth[x][y] = z

 Color[x][y] = polygon color

Basic scan line algorithm
 Must do this for all edges and all scan lines, not just one edge
 Can generalize this to handle arbitrarily complex polygons using

an edge table
 The ET contains all edges, sorted by ymin

 We move edges from ET into an active edge table as we
encounter them

 Note: our text calls AET the active edge list (AEL)

24

Building the Edge Table
 Our figure’s edges:

 AB, BC, CD, DE, EF, FA
 We create a bucket list for

each scan line which indicates
which edge(s) intersect that
scan line

 Each edge is listed only the
first time is is crossed
 E.g., FA will appear for scan

line 3, but not for lines 4-9
 Bucket chains are sorted by

increasing x of the lower
endpoint
 What if multiple buckets have

the same x endpoint?

A = (2,3) B = (7,1)
C = (13,5) D = (13,11)
E = (7,7) F = (2,9)

F

E

D

C

B
A

Edge Table Buckets
 Each bucket contains the following things:

 ymax of the edge
 Current x of the edge

 Initially, x of the vertex with the ymin coordinate

 The x increment (1/m)
 A link to the next bucket

 We build the ET as an array of pointers to buckets, indexed by
scan line number

9 7 -5/2

EF

ymax curx Δx

25

Edge Table Example
φ
φ
φ
φ
φ
φ
φ
φ

φ

φ

φ

φ

9 2 0 FA

9 7 -5/2

EF
11 7 6/4

DE

11 13 0 CD

5 7 6/4

BC

3 7 -5/2

AB

D

C

F

E

B
A

A = (2,3) B = (7,1)
C = (13,5) D = (13,11)
E = (7,7) F = (2,9)

 ymax of the edge
 x of the ymin vertex
 x increment (1/m)

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Fill algorithm
 Form the ET
 Initialize AET to empty
 Set y to the smallest y in the ET which has buckets
 Repeat until both ET and AET are empty:

 Remove AET entries where y = ymax
 Move from ET[y] to AET when ymin = y
 Sort AET on x
 Fill pixels on scan line y using pairs of x coords from AET
 Increment y
 For each non-vertical edge in AET, update x for new y

 How to detect non-vertical edge?
 Look at inverse slope - if 1/m != 0, have non-vertical edge

26

Adding to the basic scan line
algorithm

 Add other values to be interpolated to
the edge table buckets
 E.g.

 Z (depth) values
 Colors
 Texture coords

9 7 -5/2

EF

ymax curx Δx

cur z

dz/dx

dz/dy

Questions?

27

The FINAL Option

 For the daring…
 Build a 3D pipeline implementing the

vertex and rasterization pipeline presented
today.

The FINAL Option
 Vertex additions

 3D transforms
 Projections (Ortho and Frustrum)
 3D Camera Model
 Perspective divide
 Storage of depth and color at vertices

 CLIPPING in 2D

28

The FINAL Option
 Rasterization Additions

 Basic Z-Buffer algorithm
 Z value and color interpolation in scan line

algorithm.
 Gouraud Shading

 NO PHONG Illumination
 NO TEXTURE Mapping

The FINAL Option

 Your own implementation of select
OpenGL / Glu routines.

 Use modified 2D drawing routines from
Midterm / assignment 2

 Only allowed to use setPixel().

29

The FINAL Option
 List of functions to implement with

complete write-up (and test program)
by Wednesday.

 Due date:
 Wednesday, November 14th.

 Questions?

