3D Pipeline

Logistics

= Updates on assignments and such:

= Assignment 2: 2D Algorithms
= Most graded

= Assignment 3: OpenGL 3D/Animation
= Grading begun

= Assignment 4: OpenGL Realism
= Due Wednesday, November 7th

= Midterm Pipeline Implementation
= ALL GRADED

= Homework 2: Transformations
= ALL GRADED

= Homework 3: Perspective
= Past due / not graded

= All submissions via mycourses.

i Logistics

= Final exam:
= Wednesday, Nov 14
= During class -- week 11
= Brief review -- Monday Nov 12

i Plan

= Small change in plans

= This Week
= 3D Pipeline assignment
= Global Illumination

= Next Week: Week 10
= Modeling

i Goal for today’s class

= Review of 3D pipeline

« Complete understanding of the pipeline
= Vertex
= Rasterization

= 3D Pipeline assignment.
= OpenGL vs. simplified version

iGeometry and Pixels

= Images and geometry flow through separate pipelines that join
at the rasterizer

= Advantage: visual detail is in the image, not the geometry
= “Complex” textures do not affect geometric complexity

vertices —* geometry pipeline
]
image — pixel pipeline

i Vertex Pipeline

= Operates on polygon vertices
= Transform, transform, transform
= The composite matrix.

« Eventually ends in transformation to 2D
device space (integer -- discrete)

i The composite matrix

= Single 4x4 Matrix that will take you
from model to device.

= In OpenGL
= Set up before defining polygon vertices

= Each vertex will get transformed by
“current” composite.

i Graphics Vertex Pipeline

— Modeling wc —* Viewing Ve
Transformation Transformation _‘

Projection pc —* Normalization
Transformation Transformation
and Clippin:
, Viewport DC
Transformation

i Model Coordinates

= Coordinates system in which the polygon is
defined.

glBegin(GL_TRIANGLES);
glvertex3f(-1.0f, -0.5f, -4.0f);
glvertex3f(1.0f, -0.5f, -4.0f);
glvertex3f(0.0f, 0.5f, -4.0f);
glEnd();

i Graphics Vertex Pipeline

—>

Modeling wc —
Transformation

Viewing Ve
Transformation _‘

> Viewport
Transformation

Projection pc — Normalizatipn
Transformation Transformation
and Cli
DC

i World Coordinates

= Coordinate system of your world.
= Transformations: Translation, Rotation,

0 ¢
0 1,
1t
0 1

S o o =
S O = O

translation

o © O

Scaling.
0 o o]l
s, 0 0of|0
0 s, 0|0
0 0 1|0
scaling

0

cosf —sinf

sinf
0

0

cosf
0

Rotate x

cos6
0

-sinf
0

0
1
0
0

sin@
0

cos6
0

Rotate y

- o o O

cosf —sinf

sinf
0
0

Rotate z

cos6
0
0

S = O O

- o o O

i World Coordinates

= Defining transformations

glTranslatef(tx, ty, tz)
glScalef(sx, sy, sz)

glRotatef(angle, x, y, 2z)

i Graphics Vertex Pipeline

—>

Modeling wc —
Transformation

Viewing Ve
Transformation _‘

Projection pCc —
Transformation

Normalization
Transformation

and Clippin.

> Viewport DC
Transformation

i View Coordinates

= Sometime called camera coordinates
= World as seen from pov of camera

i View transform

The eyepoint, lookat, and the up vector define the viewing-reference coordinate
system, also known as camera or eye coordinates.
= The default camera orientation has the camera/viewing-reference/eye coordinate
system coincident with the world axes, i.e.,
= Eyepoint at (0,0, 0)
= Lookat (0,0, -1)
= Up vector (0, 1, 0) anchored at eyepoint

= Then
= n = eyepoint — lookat is (0, 0, 1) (normalized*)
= u=upXn is (1,0, 0) (normalized)
= v=nxuis(0,1,0)

= *normalized means a vector of length 1

gluLookAt(eye.x, eye.y, eye.z, lookat.x,
lookat.y, lookat.z, up.x, up.y, up.z)

World to Camera Coordinate Transformation

= So, we can do something similar in 3D
= Build your own set of world and camera coordinates
= Come up with the four transformations needed to make the axes coincide

= These are the same four transformations that will be applied to all vertices
in the world to get them in terms of camera coordinates

= The composite of these is equivalent to

u, u, u, -ueeyepoint
V, V, V, -Vveeyepoint
n, n, n, -neeyepoint
0 0 O 1

i Graphics Vertex Pipeline

— Modeling wc —* Viewing VC
Transformation Transformation _‘

Projection pc —* Normalization
Transformation Transformation
and Clippin:
, Viewport DC
Transformation

i Projection

= Projecting 3D points onto “film plane”
= Orthographic
= Perspective

i Perspective Projection

10

i Perspective Projection

1 0 0 O]
Mperspective = O 1 O O
O 0 1 O
0 0 1/d O]

glFrustum(left, right, bottom, top, near,

far)

i Orthographic Projection

x,] [l 0 0 O][x
v, 01 0 Ofly
2| 1o 0 0 of:
1 0 0 0 11

glOrtho (left, right, bottom, top, near, far)

11

i Graphics Vertex Pipeline

—{ Modeling we —
Transformation

Viewing Ve
Transformation _‘

Projection PC —
Transformation

Normalization
Transformation

and Cli

, Viewport DC
Transformation

+

View Volumes

Orthographic Perspective/Frustum

12

Frustum Normalization in OpenGL

Remember that all projections in OpenGL map the view volume to a
2 X2 X2 cube.

Transformed
Frustum
View Volume

(VW YW Zpar)

Yaorm

(¥ Y0 Znear)

Clipping
Window

Fnorm

(=1,-1.-1)

Sview

Projection Normalized
Reference View
Point Volume

Orthographic Normalization in OpenGL

All projects in OpenGL map the view volume to a 2 X 2 X 2 cube.

Orthogonal-Projection
View Volume

(Va0 YW Zra)

, -
Yaorm Zyorm

(1.1.1)

(i Wi Znear)

X,

Fnorm

Yriew

(-1,-1,-1) Normalized

View Volume

Ze:
Sview

13

i Normalization

= Converts points in view volume to a
standard canonical space.

i Normalization - Ortho

—(righi+left)]

glOrtho (left, right, bottom, top,

| |em O 0 i
Y , — 0 boﬁorz?z— tap 0 _(Ei%w
z 0 0 Sfar —Znea r = jJE? :—+ n?zr)
1 |0 0 0 I

near, far)

T

14

i Normalization - Perspective

?

I—lNK‘C‘_H

glFrustum(left, right,

A
0 bozﬁ.i::?ff ;op _(bb;iif—zf;p> 0 Y
- x
00 g e
0 0 1 0o |1]

bottom, top, near, far)

i Graphics Vertex Pipeline

— Modeling wc —* Viewing VC
Transformation Transformation _‘

Normalization

> Viewport
Transformation

Projection pCc — ;
Transformation Transformation
and Cli
DC

15

i Device (Screen) coords

= Viewport transform

= Transforms points from canonical space to
points on screen

i Viewport Transform

= The normalized device coordinates
(x,y),

=-l<X=<+1land-1<y=< +1, are converted
into pixel coordinates left < x,, < left+width
and bottom < y,, < bottom+height.

= The z coordinate -1 <z < +1 is scaled in
therange0 <z, < 1.

16

i Viewport Transformation

= The sequence:
T(umin' vmin) : S(Sx'sy) : T(_xmin' _ymin)
= The matrices:

'xvmax - 'xvmm

0 0
1 0 v, Wonax = W onin 1 0 -xw,,
=10 1 .| 0 RS A N PR YW
IWinax = YWiin
00 1 00 1
0 0 1
XVinax = XVinin 0 —xw,, % MVinax = XVinin +xv,,
Winax = Wiin Wiax = Win
- 0 Winax = YVinin —ywx YVinax ~ YVimin v
min min
IWinax = YWnin Wiax = YWhin
0 0 1

i Viewport Transform

1
x, = left+width-
1
¥ = bottom + height - L1~
z4+1
.
v 2

glViewport(left, bottom, width, height)

i Viewport Transformation

= Note that this is a 3D matrix

= To get from 4D to 3D, perform the
homogeneous transform:

=
Yo
y N
z
e
w

i Graphics Vertex Pipeline

— Modeling wc —* Viewing VC
Transformation Transformation _‘

Projection pc — Normalizatipn
Transformation Transformation
and Clippin:

> Viewport DC
Transformation

Watch the order in which matricies are applied

18

i At this point...

= You still only have vertices

= All vertices have been converted to
screen coordinates.

= You are ready for rasterization.

= Questions?

i Rasterization

= Convert vertices to polygons
= Issues:
= Need to fill interior points
= What color to shade?
= Which polygon to draw at a given pixel?

= We will modify the basic scan line algorithm.

= But first, we'll need more info at each of the
vertices.

19

iShading Models

= Gouraud Shading

= Illumination is interpolated across each
polygon

= Normals required at each polygon vertex,
calculated as an average of the normals of
each face that shares that vertex

= Illumination is calculated for each polygon
vertex

= Interior points interpolated from endpoint
illumination intensities

iShading Models

= Gouraud Shading — interpolating normals

20

i Shading Model
= Gouraud Shading

Need to maintain

color at each vertex

Hwang

i Calculating color

= Lighting
= Material properties
= Textures

= More info to maintain at each vertex
= Material properties
= Normals
= Texture coords

21

Which polygon to render

= From Wikipedia:

= hidden surface determination is the process used to
determine which surfaces and parts of surfaces are not
visible from a certain viewpoint.

= A hidden surface determination algorithm is a solution to the
visibility problem

= the core differences between most rendering algorithms is
how they handle this problem.

Stages of Hidden Surface Determinations

= Viewing Fustrum Culling

= Remove objects not in view volume

= Le Clipping
= Backface culling

= Remove faces that do not face the camera
= Occlusion Culling

= Determines which portions of objects are hidden by other objects
from a given viewpoint.

= Contribution Culling
= Objects whose screen projection are so small are thrown away.

22

Depth (Z) Buffer Algorithm

= Requires two arrays the size of the screen
= Depth — initialized as “far away”
= Color — initialized to background color

= Used in OpenGL

For each polygon,
For each y,
For each x ,
If z < depth([x][y],
Depth[x] [y] = z
Color[x] [y] = polygon color

Basic scan line algorithm

= Must do this for all edges and all scan lines, not just one edge

= Can generalize this to handle arbitrarily complex polygons using
an edge table

= The ET contains all edges, sorted by y, ...

= We move edges from ET into an active edge table as we
encounter them

= Note: our text calls AET the active edge list (AEL)

23

Bqumg the Edge Table

Our figure’s edges:

= AB, BC, CD, DE, EF, FA L

= We create a bucket list for s

each scan line which indicates »

which edge(s) intersect that =

scan line

m

= Each edge is listed only the

first time is is crossed

= E.g., FA will appear for scan ~. B

line 3, but not for lines 4-9

= Bucket chains are sorted by

increasing x of the lower A=(23 B=(71)
endpoint C=(13,5) D=(1311)
= What if multiple buckets have E=(7,7) F=(29)

the same x endpoint?

Edge Table Buckets

= Each bucket contains the following things:
=y, Of the edge
= Current x of the edge
= Initially, x of the vertex with the y,,, coordinate
= The x increment (1/m)
= Alink to the next bucket

= We build the ET as an array of pointers to buckets, indexed by
scan line number

EF
EEEaE

ymax curx Ax

24

- A A A
© O =~ N W A~ O

O =2 N W H 01 O N ©

Edge Table Example

[
¢
¢ | = y, . of the edge b
z = xof the y . vertex -
5| = xincrement (1/m) i &
¢ E
p EF DE
] 9| 7]|-512 11| 7 | 6/4
i o 7Sz [f—{11] 7]eu | [} |
~.B
—1 111|130 CD it
¢
1,/ 9|20 FA A=(23) B=(71)
3 C=(135 D=(13,11)

3| 7|s2 | 5| 7|es | | E=(77) F=(29
AB BC

Fill algorithm

= Form the ET
= Initialize AET to empty
= Sety to the smallest y in the ET which has buckets
= Repeat until both ET and AET are empty:
= Remove AET entries where y =y, .
= Move from ET[y] to AET when y,,,, = »
= Sort AET on x
= Fill pixels on scan line y using pairs of x coords from AET
= Increment y
= For each non-vertical edge in AET, update x for new y
= How to detect non-vertical edge?
= Look at inverse slope - if 2/m /= 0, have non-vertical edge

25

Adding to the basic scan line
algorithm

= Add other values to be interpolated to
the edge table buckets

= E.Q.
= Z (depth) values
= Colors

= Texture coords
dz/dx

EF curz - dz/dy

Lol 7fe2] [| | 4—

ymax curx Ax

i Questions?

26

i The FINAL Option

= For the daring...

= Build a 3D pipeline implementing the
vertex and rasterization pipeline presented
today.

i The FINAL Option

= Vertex additions
= 3D transforms
= Projections (Ortho and Frustrum)
= 3D Camera Model
= Perspective divide
= Storage of depth and color at vertices

= CLIPPING in 2D

27

i The FINAL Option

= Rasterization Additions
» Basic Z-Buffer algorithm

= Z value and color interpolation in scan line
algorithm.

= Gouraud Shading

= NO PHONG Illumination
= NO TEXTURE Mapping

i The FINAL Option

= Your own implementation of select
OpenGL / Glu routines.

= Use modified 2D drawing routines from
Midterm / assignment 2

= Only allowed to use setPixel().

28

i The FINAL Option

= List of functions to implement with
complete write-up (and test program)
by Wednesday.

= Due date:
= Wednesday, November 14th.

= Questions?

29

