CSCI 742 - Compiler Construction

Lecture 7
Regular Expression - Automata Conversion
Instructor: Hossein Hojjat

February 6, 2017
Lexer Automatic Construction: Big Picture

Input: Token Spec
- List of regular expressions (RE) in priority order

Output: Lexer
- Reads an input stream and breaks it up into tokens according to REs

Algorithm
- Convert REs into non-deterministic finite automata (NFA)
- Convert NFA to DFA
- Convert DFA into transition table
Lexer Automatic Construction: Example

- RE for tokens:
 \((a|ab)\)

- NFA:

- DFA:

- Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Error</td>
</tr>
<tr>
<td>1</td>
<td>Error</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Error</td>
<td>Error</td>
</tr>
</tbody>
</table>
Kleene’s Theorem

Theorem
A language L can be described by regular expression if and only if L is the language accepted by a finite automaton.

Algorithms:

- regular expression \Rightarrow automaton important for lexer construction
- automaton \Rightarrow regular expression interesting method in formal languages theory
Build the finite automaton inductively, based on the definition of regular expressions.

- \(a \)
- \(\epsilon \)
- \(\emptyset \)
Alternation $R_1 \mid R_2$

Concatenation $R_1 \cdot R_2$

Final States
no final anymore
RE \Rightarrow Finite Automaton

Alternation R^*

Final States

no final anymore
Question

- Construct an NFA for the regular expression \((ab)^* \mid b^*\)
Exercise

Question

- Construct an NFA for the regular expression \((ab)^* \mid b^*\)

Answer
For every NFA there exists an equivalent DFA that accepts the same set of strings.

NFAs could be exponentially smaller (succinct).

Idea: keep track of a set of all possible states in which the automaton could be.

View this finite set as one state of new automaton.
From NFA to DFA: Example

- When processing if we see a set exactly the same as a set constructed earlier we mark it.
From NFA to DFA: Example

When processing if we see a set exactly the same as a set constructed earlier we mark it.

\[\{ q_0 \} \]
From NFA to DFA: Example

When processing if we see a set exactly the same as a set constructed earlier we mark it.
From NFA to DFA: Example

- When processing if we see a set exactly the same as a set constructed earlier we mark it.
From NFA to DFA: Example

When processing if we see a set exactly the same as a set constructed earlier we mark it.
From NFA to DFA: Example

- When processing if we see a set exactly the same as a set constructed earlier we mark it
When processing if we see a set exactly the same as a set constructed earlier we mark it
When processing if we see a set exactly the same as a set constructed earlier we mark it
From NFA to DFA: Example

- When processing if we see a set exactly the same as a set constructed earlier we mark it ✓
From NFA to DFA: Example

- When processing if we see a set exactly the same as a set constructed earlier we mark it.
Question

- Construct an NFA for the regular expression $(bb^*)|a^*$ over alphabet \{a, b\} and determinize it.