Program Loops

- **Loop**: a computation repeatedly executed until a terminating condition is reached

- **High-level loop constructs**:
 - While loop: `while(E) S`
 - Do-while loop: `do S while(E)`
 - For loop: `for(i=1; i<=u; i+=c) S`

- **90/10 rule**:
 90% of any computation is normally spent in 10% of the code (loops)

- Control-flow graph can help give us useful information

- How to analyze the control-flow graph to detect loops?

- Some techniques to optimize loops
Detecting Loops

- Need to identify loops in the program
- Easy to detect loops in high-level constructs
- Harder to detect loops in low-level code or in general control-flow graphs

Examples where loop detection is difficult:

- Languages with unstructured `goto` constructs: structure of high-level loop constructs may be destroyed
- Optimizing Java bytecodes (without high-level source program): only low-level code is available
Basic Blocks

- In some applications (e.g. loop detection) control-flow graph of basic block is more convenient
- Basic block is a sequence of instructions
 - no branches out from the middle of basic block
 - no branches into the middle of basic block
- Basic block should be maximal
- Execution of basic block
 - starts with first instruction
 - includes all instructions in basic block
Basic Block Construction

- Start with control-flow graph of instructions
- Visit all edges in graph
- Merge adjacent edges

![Diagram showing basic block construction](image-url)
Basic Blocks Example

\[
\begin{align*}
x &= 0; \\
z &= x \times z; \\
L1: & \quad c = \frac{z}{w}; \\
& \quad \text{if } (c < y) \text{ goto } L2; \\
& \quad e = \frac{z}{c}; \\
& \quad f = e + 1; \\
L2: & \quad g = f; \\
& \quad h = t - g; \\
& \quad \text{if } (e > 0) \text{ goto } L3; \\
& \quad \text{goto } L1; \\
L3: & \quad \text{return}
\end{align*}
\]
Goal: identify loops in the control flow graph

A loop in the CFG:

- Is a set of basic blocks
- Has a loop header: node in a loop that has no immediate predecessors in the loop
- Has a back edge from one of its nodes to the header
Control-Flow Analysis

- Goal: identify loops in the control flow graph

A loop in the CFG:

- Is a set of basic blocks
- Has a loop header: node in a loop that has no immediate predecessors in the loop
- Has a back edge from one of its nodes to the header
Dominators

- Use concept of dominators in CFG to identify loops
- Node d dominates node n if all paths from the entry node to n go through d

- Every node dominates itself
- 1 dominates 1, 2, 3, 4
- 2 does not dominate 4
- 3 does not dominate 4

Intuition:

- Header of a loop dominates all nodes in loop body
- Back edges = edges whose heads dominate their tails
- Loop identification = back edge identification
Immediate Dominators

- CFG entry node dominates all CFG nodes
- If d_1 and d_2 dominate n, then either
 - d_1 dominates d_2, or
 - d_2 dominates d_1
- d strictly dominates n if d dominates n and $d \neq n$
- Immediate dominator $idom(n)$ of a node n: the unique last strict dominator of n on any path from entry node
Build a dominator tree as follows:
- Nodes are nodes of control flow graph
- Root is CFG entry node
- Edge from d to n if d immediate dominator of n
Exercise

- Build the dominator tree for the following control flow graph
Exercise

● Build the dominator tree for the following control flow graph
Data-flow-like Algorithm for Computing Dominators

- Let N = set of all basic blocks
- Lattice: $(2^N, \subseteq)$
- Has finite height
- Meet is set intersection, top element is N

Formulate problem as a system of constraints

- Define $\text{dom}(n)$ = set of nodes that dominate n
- $\text{dom}(n_0) = \{n_0\}$ where n_0 is the entry node
- $\text{dom}(n) = \bigcap\{\text{dom}(m) \mid m \in \text{pred}(n)\} \cup \{n\}$
 i.e, the dominators of n are the dominators of all of n’s predecessors and n itself
Dominator Computation

\[
\begin{align*}
\{1\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\{1, 2, 3, 4, 5, 6, 7\} & \\
\end{align*}
\]

\[\bullet 7 \rightarrow 4 \text{ is a back edge: head } 4 \text{ dominates tail } 7\]

\[4 \in \text{dom}(7)\]
Dominator Computation

1. $\{1\}$
2. $\{1, 2\}$
3. $\{1, 2, 3, 4, 5, 6, 7\}$
4. $\{1, 2, 3, 4, 5, 6, 7\}$
5. $\{1, 2, 3, 4, 5, 6, 7\}$
6. $\{1, 2, 3, 4, 5, 6, 7\}$
7. $\{1, 2, 3, 4, 5, 6, 7\}$

- \rightarrow is a back edge: head 4 dominates tail 7.
- $4 \in \text{dom}(7)$.
Dominator Computation

• \(4 \rightarrow 7\) is a back edge: head \(4\) dominates tail \(7\)

\[
\begin{align*}
\{1\} & \quad \{1, 2\} \\
\{1, 3\} & \quad \{1, 2, 3, 4, 5, 6, 7\} \\
\{1, 2, 3, 4, 5, 6, 7\} & \quad \{1, 2, 3, 4, 5, 6, 7\}
\end{align*}
\]
Dominator Computation

• 7 → 4 is a back edge: head 4 dominates tail 7
• 4 ∈ dom(7)
Dominator Computation

• 7 → 4 is a back edge: head 4 dominates tail 7

• 4 ∈ dom(7)
• $7 \rightarrow 4$ is a back edge: head 4 dominates tail 7
 • $4 \in \text{dom}(7)$
Natural Loops

- Back edge: edge $n \rightarrow h$ such that h dominates n
- **Natural loop** of a back edge $n \rightarrow h$:
 - h is loop header
 - Set of loop nodes is set of all nodes that can reach n without going through h
- Algorithm to identify natural loops in CFG
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge
Nested Loops

- If two loops do not have the same header then
 - Either one loop (inner loop) contained in the other (outer loop)
 - Or two loops are disjoint

- If two loops have the same header, typically unioned and treated as one loop

Two loops: \{1, 2\} and \{1, 3\}
Unioned: \{1, 2, 3\}
- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code
Now we know the loops

Next: optimize these loops

- Loop invariant code motion (this lecture)
- Strength reduction of induction variables
- Induction variable elimination
• If a computation produces the same value in every loop iteration, move it out of the loop

```c
def i = 1; i <= N; i++) {
    x = x + 1;
    // inner loop
    for( j = 1; j <= N; j++)
        a[i][j] = 100*N + 10*i + j + x;
}
```
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

```c
// initialize
t1 = 100*N;

for( i = 1; i <= N; i++) {
    x = x + 1;
    // inner loop
    for( j = 1; j <= N; j++)
        a[i][j] = 100*N + 10*i + j + x;
}
```
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

```c
    t1 = 100*N;
    for( i = 1; i <= N; i++) {
        x = x + 1;
        // inner loop
        for( j = 1; j <= N; j++)
            a[i][j] = t1 + 10*i + j + x;
    }
```
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

```c
int t1 = 100*N;
for(i = 1; i <= N; i++) {
    x = x + 1;
    t2 = 10*i + x;
    for(j = 1; j <= N; j++)
        a[i][j] = t1 + 10*i + j + x;
}
```
Loop Invariant Code Motion

- If a computation produces the same value in every loop iteration, move it out of the loop

```c
    t1 = 100*N;
    for( i = 1; i <= N; i++) {
        x = x + 1;
        t2 = 10*i + x;
        for( j = 1; j <= N; j++)
            a[i][j] = t1 + t2 + j + x;
    }
```
An instruction \(a = b \text{ OP } c \) is loop-invariant if each operand is:
- Constant, or
- Has all definitions outside the loop, or
- Has exactly one definition, and that is a loop-invariant computation.