CSCI 742 - Compiler Construction

Lecture 38
More Data-flow Analysis
Instructor: Hossein Hojjat

May 5, 2017
Recap: Lattices

- Lattice: set augmented with a partial order relation \preceq
- Each two-element subset has a lub and a glb
- Can define: meet \sqcap and join \sqcup
- Use lattice to express information about a point in a program
- $x \preceq y$ means “x is less or equally precise as y”
- To compute information: build constraints that describe how the lattice information changes
 - Effect of instructions: transfer functions
 - Effect of control flow: meet operation
Recap: Transfer Functions

- L: data-flow information lattice
- Transfer function $F_S : L \rightarrow L$ for each instruction S
- Describes how S modifies the information in the lattice
- If $in(S')$ is info before S and $out(S')$ is info after S then
- Forward analysis: $out(S) = F(in(S))$
- Backward analysis: $in(S) = F(out(S))$
Recap: Control Flow

- Meet operation models how to combine information at split/join points in the control flow
- Forward analysis:

\[in(S) = \bigcap \{ out(S') | S' \in pred(S) \} \]

- Backward analysis:

\[out(S) = \bigcap \{ in(S') | S' \in succ(S) \} \]
Range Analysis

- Try to determine the possible range of integer values of a variable
- Elements: \([a, b]\) where \(a \leq b\) or \(\emptyset\)
- We allow \(a = -\infty\) and/or \(b = \infty\)
 - \((-\infty, +\infty)\) set of all integers
- \([a, b] \cup [a', b'] = [\min(a, a'), \max(b, b')]\)
- Forward analysis with \(\cup\) as the meet operator
Domain of Intervals $[a, b]$ where $a, b \in \{-\infty, 2, 3, 4, \infty\}$
Suppose we have only two integer variables: \(x, y \)

- \(x : [a, b] \quad y : [c, d] \)
- \(x = x + y \)
- \(x : [a', b'] \quad y : [c', d'] \)

If \(a \leq x \leq b \) and \(c \leq y \leq d \) and we execute \(x = x + y \) then \(x' = x + y \) and \(y' = y \)

So we can let

\[
\begin{align*}
a' &= a + c \\
c' &= c \\
b' &= b + d \\
d' &= d
\end{align*}
\]
Suppose we have only two integer variables: x, y

if $a \leq x \leq b$ and $c \leq y \leq d$
and we execute $y = x - y$ then

$x' = x$ and $y' = y - x$

So we can let

$$a' = a$$
$$c' = a - d$$
$$b' = b$$
$$d' = b - c$$
Combine Data-flow Facts

\[x : [-10, 10] \quad y : [-1000, 1000] \]

\[
\begin{align*}
\text{if} \ (x > 0) & \{
\quad y = x + 100; \\
\text{else} \ {&} \{
\quad y = -x - 50;
\}
\end{align*}
\]
Iterate until stabilizes

\[
\begin{align*}
x &= 1; \\
\text{while } (x < 10) \{} & \\
&\hspace{1em} x = x + 2; \\
&\{} \\
\end{align*}
\]
- Run range analysis, prove error is unreachable

```java
int M = 16;
int a[] = new int[M];
int x = 0;
while (x < 10) {
    x = x + 3;
}
if (x >= 0) {
    if (x <= 15)
        a[x] = 7;
    else
        error;
} else {
    error;
}
```

Benefits: faster execution (no checks)

Program cannot crash with error
Exercise

- Run range analysis, prove error is unreachable

```java
int M = 16;
int a[] = new int[M];
int x = 0;
while (x < 10) {
    x = x + 3;
}
if (x >= 0) {
    if (x <= 15)
        a[x] = 7;
    else
        error;
} else {
    error;
}
```
Exercise

- Run range analysis, prove error is unreachable

```java
int M = 16;
int a[] = new int[M];
int x = 0;
while (x < 10) {
    x = x + 3;
} 
if (x >= 0) {
    if (x <= 15)
        a[x]=7;
    else
        error;
} else {
    error;
}
```
Exercise

- Run range analysis, prove error is unreachable

```java
int M = 16;
int a[] = new int[M];
int x = 0;
while (x < 10) {
    x = x + 3;
}
if (x >= 0) {
    if (x <= 15)
        a[x] = 7;
    else
        error;
} else {
    error;
}
```

- Benefits: faster execution (no checks)
- Program cannot crash with error
Initialization Analysis

```java
class Test {
    static void test(int p) {
        int n;
        p = p - 1;
        if (p > 0) {
            n = 100;
        }
        while (n != 0) {
            System.out.println(n);
            n = n - p;
        }
    }
}

• Does javac compile this program without error?
```
class Test {
 static void test(int p) {
 int n;
 p = p - 1;
 if (p > 0) {
 n = 100;
 }
 while (n != 0) {
 System.out.println(n);
 n = n - p;
 }
 }
}

- Does javac compile this program without error?
Test.java:8: error: variable n might not have been initialized
while (n != 0) {
We would like variables to be initialized on all execution paths.
Otherwise, the program execution could be undesirably affected by the value that was in the variable initially.
We can enforce such check using initialization analysis.

```java
class Test {
    static void test(int p) {
        int n;
        p = p - 1;
        if (p > 0) {
            n = 100;
        } else {
            n = -100;
        }
        while (n != 0) {
            System.out.println(n);
            n = n - p;
        }
    }
}
```
• Does javac compile this program without error?

```java
static void test(int p) {
    int n;
    p = p - 1;
    if (p > 0) {
        n = 100;
    }
    System.out.println("Hello!");
    if (p > 0) {
        while (n != 0) {
            System.out.println(n);
            n = n - p;
        }
    }
}
```
class Test {
 static void test(int p) {
 int n;
 p = p - 1;
 if (p > 0) {
 n = 100;
 } else {
 n = -100;
 }
 while (n != 0) {
 System.out.println(n);
 n = n - p;
 }
 }
}

- \(\bot\) indicates presence of flow from states where variable was not initialized
- If variable is possibly uninitialized, we use \(\bot\)
- Otherwise (initialized, or unreachable): \(\top\)
Sketch of Initialization Analysis

• Domain: for each variable, for each program point: \(D = \{ \bot, \top \} \)
• At program entry, local variables: \(\bot \), parameters: \(\top \)
• At other program points: each variable: \(\top \)
• An assignment \(x = e \) sets variable \(x \) to \(\top \)
• \(\text{glb}(\sqcap) \) of any value with \(\bot \) gives \(\bot \)
• Uninitialized values are contagious along paths
• \(\top \) value for \(x \) means there is definitely no possibility for accessing uninitialized value of \(x \)
Run initialization analysis

```c
int n;
p = p - 1;
if (p > 0) {
    n = 100;
}
while (n != 0) {
    n = n - p;
}
```