CSCI 742 - Compiler Construction

Lecture 37
Data-flow Analysis Framework
Instructor: Hossein Hojjat

May 3, 2017
Live variable analysis and available expressions analysis are similar

- Define some information that they need to compute
- Build constraints for the information
- Solve constraints iteratively:
 - Information always “increases” during iteration
 - Eventually, it reaches a fixed point

We would like a general framework

- Framework applicable to many other analyses
- Live variable/available expressions instances of the framework
Data-flow Analysis Framework

Data-flow analysis:

- Common framework for many compiler analyses
- Computes some information at each program point
- The computed information characterizes all possible executions of the program

Basic methodology:

- Describe information about the program using an algebraic structure called a lattice
- Build constraints that show how instructions and control flow influence the information in terms of values in the lattice
- Iteratively solve constraints

We start by defining lattices and see some of their properties
A relation \(\preceq \subseteq D \times D \) on a set \(D \) is a **partial order** iff \(\preceq \) is

1. Reflexive: \(x \preceq x \)
2. Anti-symmetric: \(x \preceq y \) and \(y \preceq x \Rightarrow x = y \)
3. Transitive: \(x \preceq y \) and \(y \preceq z \Rightarrow x \preceq z \)

- A set with a partial order is called a **poset**

Examples:

- If \(S \) is a set then \((P(S), \subseteq) \) is a poset
- \((\mathbb{Z}, \leq) \) is a poset
• x immediate predecessor of y: if $x \preceq y$ and there is no z such that $x \preceq z \preceq y$

• Hasse diagram: a directed acyclic graph where the vertices are elements of the set D

• There exists an edge $x \rightarrow y$ if x is an immediate predecessor of y

Example.

• $x \preceq y$, $y \preceq t$, $z \preceq t$, $x \preceq z$, $x \preceq t$
 $x \preceq x$, $y \preceq y$, $z \preceq z$, $t \preceq t$

\[
\begin{array}{c}
t \\
y \\
z \\
x
\end{array}
\]
Exercise

- $D_n = \{\text{all divisors of } n\}$, with $d \preceq d' \iff d \mid d'$
- Draw the Hasse diagram for $D_{12} = \{1, 2, 3, 4, 6, 12\}$
Exercise

- \(D_n = \{\text{all divisors of } n\} \), with \(d \preceq d' \iff d \mid d' \)
- Draw the Hasse diagram for \(D_{12} = \{1, 2, 3, 4, 6, 12\} \)

\[
\begin{array}{c}
\vdots \\
1 \leftarrow 2 \leftarrow 4 \\
\vdots \\
3 \leftarrow 6 \\
\vdots \\
\end{array}
\]

\(D_{12} = \{1, 2, 3, 4, 6, 12\} \)
Total Order

- Partial order: no guarantee that all elements can be compared to each other
- Total order (linear order): If for any two elements x and y at least one of $x \leq y$ or $y \leq x$ is true
- (\mathbb{N}, \leq) is total order
- Hasse diagram is one-track
Subset Bounds

- Let \((X, \preceq)\) be a poset and let \(A \subseteq X\) be any subset of \(X\).
- An element, \(b \in X\), is a **lower bound** of \(A\) iff \(b \preceq a\) for all \(a \in A\).
- An element, \(m \in X\), is an **upper bound** of \(A\) iff \(a \preceq m\) for all \(a \in A\).
- An element, \(b \in X\), is the **greatest lower bound** (glb) of \(A\) iff the set of lower bounds of \(A\) is nonempty and if \(b\) is the greatest element of this set.
- An element, \(m \in X\), is the **least upper bound** (lub) of \(A\) iff the set of upper bounds of \(A\) is nonempty and if \(m\) is the least element of this set.
Find lower/upper bounds and glb/lub for these sets: \(\{b, d\}, \{a, c\}, \{d, e, f\} \)

Diagram:

- Lower bounds:
 - \(\{b\} \)
 - No glb

- Upper bounds:
 - \(\{d, g\} \)
 - lub: \(d \) because \(d \preceq g \)

- Lower bounds:
 - \(\{\} \)

- Upper bounds:
 - \(\{h\} \)

- Lower bounds:
 - \(\{\} \)

- Upper bounds:
 - \(\{\} \)
Exercise

Find lower/upper bounds and glb/lub for these sets: \(\{b, d\}, \{a, c\}, \{d, e, f\} \)

\(\{b, d\} \):

- Lower bounds: \(\{b\} \) \quad \text{glb}: b
- Upper bounds: \(\{d, g\} \) \quad \text{lub}: d \) because \(d \preceq g \)

\(\{a, c\} \):

- Lower bounds: \(\emptyset \) \quad \text{no glb}
- Upper bounds: \(\{h\} \) \quad \text{lub}: h

\(\{d, e, f\} \):

- Lower bounds: \(\emptyset \) \quad \text{no glb}
- Upper bounds: \(\emptyset \) \quad \text{no lub}
Find lower/upper bounds and glb/lub for these sets: \(\{b, d\}, \{a, c\}, \{d, e, f\} \)

\(\{b, d\} \):
- Lower bounds: \(\{b\} \)
 glb: \(b \)
- Upper bounds: \(\{d, g\} \)
 lub: \(d \) because \(d \preceq g \)

\(\{a, c\} \):
- Lower bounds: \(\{} \)
 no glb
- Upper bounds: \(\{h\} \)
 lub: \(h \)
Exercise

Find lower/upper bounds and glb/lub for these sets: \{b, d\}, \{a, c\}, \{d, e, f\}

\{b, d\}:
- Lower bounds: \{b\} glb: b
- Upper bounds: \{d, g\} lub: d because \(d \preceq g\)

\{a, c\}:
- Lower bounds: \{\} no glb
- Upper bounds: \{h\} lub: h

\{d, e, f\}:
- Lower bounds: \{\} no glb
- Upper bounds: \{\} no lub
Poset \((D, \preceq)\) is called a lattice if

- For any \(x, y \in D\), \(\{x, y\}\) has a lub, which is denoted as \(x \sqcup y\) (join)
- For any \(x, y \in D\), \(\{x, y\}\) has a glb, which is denoted as \(x \sqcap y\) (meet)

Example.
- For \((P(B), \subseteq)\): \(x \sqcap y = x \cap y\), \(x \sqcup y = x \cup y\)
- For \((\mathbb{Z}, \leq)\): \(x \sqcap y = \text{min}(x, y)\), \(x \sqcup y = \text{max}(x, y)\)
• **Complete lattice** is a poset in which any subset has a glb and a lub
• A complete lattice must have:
 • a least element \(\bot \)
 • a greatest element \(\top \)

Example: Power Set Lattice

\[
\begin{align*}
\top &= \{a, b, c\} \\
\{a, b\} &\quad \{a, c\} & \quad \{b, c\} \\
\{a\} &\quad \{b\} & \quad \{c\} \\
\bot &= \{\}
\end{align*}
\]
Exercise

- Which are the following posets are lattices?

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
- Two elements that don’t have an lub or glb cannot be comparable
- View the upper/lower bounds on a pair as a sub-Hasse diagram:
 If there is no greatest/least element in this sub-diagram, then it is not a lattice
Exercise

- Which are the following posets are lattices?

 ![Poset Diagrams]

 - To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb
 - Two elements that don’t have an lub or glb cannot be comparable
 - View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice
Exercise

• Which are the following posets are lattices?

 no

 yes ✓

• To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb

• Two elements that don’t have an lub or glb cannot be comparable

• View the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no greatest/least element in this sub-diagram, then it is not a lattice
Which are the following posets are lattices?

- To show a poset is not a lattice, it suffices to find a pair that does not have an lub or a glb.
- Two elements that don’t have an lub or glb cannot be comparable.
- View the upper/lower bounds on a pair as a sub-Hasse diagram. If there is no greatest/least element in this sub-diagram, then it is not a lattice.
Information computed by e.g. live variable and available expressions analyses can be expressed as elements of lattices.

If \(x \leq y \) then \(x \) is less or equally precise as \(y \)
- i.e., \(x \) is a conservative approximation of \(y \)

Top \(\top \): most precise, best case information

Bottom \(\bot \): least precise, worst case information

Merge function = glb (meet) on lattice elements
- Most precise element that is a conservative approximation of both elements
Example: Available Expressions

- Trivial answer with zero information, allows no optimization: \(\bot = {} \) (No expression available)
Example: Live Variables

- If V is the set of all variables in a program and P the power set of V, then (P, \supseteq) is a lattice
- Sets of live variables are elements of this lattice
- Trivial answer with zero information, allows no optimization: $\bot = V$ (All variables are live, nothing is dead)
Using Lattices

• Assume information we want to compute in a program is expressed using a lattice L

• To compute the information at each program point we need to:
 - Determine how each statement in the program changes the information
 - Determine how information changes at join/split points in the control flow
Data-flow analysis defines a transfer function $F : L \rightarrow L$ for each statement in the program.

- Describes how the statement modifies the information.
- Consider $in(S)$ as information before S, and $out(S)$ as information after S.
- Forward analysis: $out(S) = F(in(S))$.
- Backward analysis: $in(S) = F(out(S))$.

Sequential Composition

- Consider statements $S = S_1; \ldots; S_n$ with transfer functions F_1, \ldots, F_n
- $in(S)$ is information at the beginning
- $out(S)$ is information after at the end

- Forward analysis:
 \[
 out(S) = F_n(\cdots (F_1(in(S)))) = F_n \circ \cdots \circ F_1(in(S))
 \]

- Backward analysis:
 \[
 in(S) = F_1(\cdots (F_n(out(S)))) = F_1 \circ \cdots \circ F_n(out(S))
 \]
Split/Join Points

- Data-flow analysis uses meet/join operations at split/join points in the control flow
- Forward analysis:
 \[in(S) = \bigcap \{ out(S') | S' \in pred(S) \} \]
- Backward analysis:
 \[out(S) = \bigcap \{ in(S') | S' \in succ(S) \} \]