CSCI 742 - Compiler Construction

Lecture 3
Introduction to Regular Expressions
Instructor: Hossein Hojjat

January 27, 2017
Compiler Phases

Source Code (concrete syntax)

Regular Expressions for Tokens

Token Stream

Context-Free Grammar

Abstract Syntax Tree (AST)

Attributed AST

Machine Code

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Lexical Analysis

Syntax Analysis (Parsing)

Semantic Analysis (Name Analysis, Type Analysis, ...)

Error

Code Generation
Lexical Analysis

• **Goal:** Partition input string into meaningful elements called tokens
• Token is a syntactic category:
 - In English: verbs, nouns, pronouns, adverbs, adjectives, ...
 - In programming language: identifier, integer, keyword, semicolon, ...

Input:

```plaintext
if ( x == 0 ) x = x + 1 ;
```

Output:

```
IF , LPAREN , ID(x) , EQUALS , INTLIT(0) , RPAREN , ID(x) , EQSIGN , ID(x) , PLUS , INTLIT(1) , SEMICOLON
```
Lexical Analysis

- A lexical analyzer ("lexer" or "scanner") has the following tasks:
 1) Recognize substrings corresponding to tokens
 2) Return tokens with their categories

- There are finitely many token categories
 - Identifier
 - LPAREN
 - RPAREN
 - COLON
 - ... (many, but finitely many)

- There is unbounded number of instances of token classes like Identifier
Lexical Analysis

- Output of lexical analysis is a stream of tokens which is input to parser.
- Parser relies on token category:
 - For example, it treats identifiers and keywords differently.
- We use token categories when writing grammars for parsing.
- **Regular languages** can be used to describe valid tokens of almost every programming language.
Languages

- Alphabet Σ: Finite set of elements
 - For lexer: Characters
 - For parser: Token classes
- Words (strings): Sequence of characters from the alphabet Σ
 - Special case: empty word ϵ
- Σ^*: Set of all words over Σ
- Language over Σ: a subset of Σ^*
Languages Example

• \(\Sigma = \{a, b\} \)
• \(\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aab, aba, \cdots\} \)

Examples of two languages, subsets of \(\Sigma^* \):

• \(L_1 = \{a, bb, ab\} \) (finite language, three words)
• \(L_2 = \{ab, abab, ababab, \cdots \} = \{(ab)^n|n \geq 1\} \) (infinite language)
Operation on Languages

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>union of L_1 and L_2</td>
<td>$L_1 \cup L_2 = {s \mid s \in L_1 \lor s \in L_2}$</td>
</tr>
<tr>
<td>written $L_1 \cup L_2$</td>
<td></td>
</tr>
<tr>
<td>concatenation of L_1 and L_2</td>
<td>$L_1.L_2 = {st \mid s \in L_1 \land t \in L_2}$</td>
</tr>
<tr>
<td>written $L_1.L_2$</td>
<td></td>
</tr>
<tr>
<td>Kleene closure of L</td>
<td>$L^* = \bigcup_{i=0}^{\infty} L^i$</td>
</tr>
<tr>
<td>written L^*</td>
<td></td>
</tr>
<tr>
<td>positive closure of L</td>
<td>$L^+ = \bigcup_{i=1}^{\infty} L^i$</td>
</tr>
<tr>
<td>written L^+</td>
<td></td>
</tr>
</tbody>
</table>

- L^i is recursively defined

 $L^0 = \{\epsilon\}$ (the language consisting only of the empty string)

 $L^1 = L$

 $L^{i+1} = \{wv : w \in L^i \land v \in L\}$ for each $i > 0$
Star Operation: Example

- \(L = \{a, ab\} \)
- \(L.L = \{aa, aab, aba, abab\} \)
- \(L^* = \{a, ab, aa, aab, aba, abab, aaa, \ldots\} \)
- \(= \{w \mid \text{immediately before each } b \text{ there is } a \} \)
• Star allows us to define infinite languages starting from finite ones
• We can use it to describe some of those infinite but reasonable languages
Star allows us to define infinite languages starting from finite ones.
We can use it to describe some of those infinite but reasonable languages.

When is L^* finite?
Star allows us to define infinite languages starting from finite ones
We can use it to describe some of those infinite but reasonable languages

When is L^* finite?
Only in these two cases:

- $\emptyset^* = \{ \epsilon \}$ (because $\emptyset^0 = \{ \epsilon \}$)
- $\{ \epsilon \}^* = \{ \epsilon \}$
Properties of Words

- Let $w_i \in \Sigma^*$ be a word
- Concatenation is associative:
 \[(w_1 \cdot w_2) \cdot w_3 = w_1 \cdot (w_2 \cdot w_3)\]
- Empty word ϵ is left and right identity:
 \[w \cdot \epsilon = w\]
 \[\epsilon \cdot w = w\]
- Cancellation property
 - If $w_1 \cdot w_3 = w_1 \cdot w_2$ then $w_3 = w_2$
 - If $w_3 \cdot w_1 = w_2 \cdot w_1$ then $w_3 = w_2$
- There are many other properties, many easily provable from definition of operations
Properties of Words

Length of a word

- $|\epsilon| = 0$
- $|c| = 1$ if $c \in \Sigma$
- $|w_1.w_2| = |w_1| + |w_2|$ if $w_i \in \Sigma^*$

Reverse of a word

- $\epsilon^{-1} = \epsilon$
- $c^{-1} = c$ if $c \in \Sigma$
- $(w_1.w_2)^{-1} = w_2^{-1}.w_1^{-1}$
Fact about Indexing Concatenation

- Concatenation of w and v has these letters:

$$w(0) \cdots w(|w|-1) \cdot v(0) \cdots v(|v|-1)$$

- Thus, for every i where $0 \leq i \leq |w| + |v| - 1$

$$(wv)_i = w(i), \quad \text{if } i < |w|$$

$$(wv)_i = v(i - |w|), \quad \text{if } i \geq |w|$$
• Notations to describe regular languages
 • Regular expressions (RE)
 • Regular grammars

• Regular expression over alphabet Σ:
 1. ϵ is a RE denoting the set $\{\epsilon\}$
 2. if $a \in \Sigma$, then a is a RE denoting $\{a\}$
 3. if r and s are REs, denoting $L(r)$ and $L(s)$, then:
 - $r \mid s$ is a RE denoting $L(r) \cup L(s)$
 - $r \cdot s$ is a RE denoting $L(r).L(s)$
 - r^* is a RE denoting $L(r)^*$

• Precedence: Closure then Concatenation then Alternation
Regular Expressions

- Regular expressions are just a notation for some particular operations on languages
 \[
 \text{letter (letter | digit)*}
 \]
- Denotes the set
 \[
 \text{letter (letter } \cup \text{ digit})*
 \]
- Any finite language \(\{w_1, \ldots, w_n\} \) can be described using regular expression
 \[
 w_1 | \cdots | w_n
 \]
Some RE operators can be defined in terms of previous ones

- \([a..z] = a | b | \cdots | z\) (use ASCII ordering)
- \(e?\) (optional expression) = \(e | \epsilon\)
- \(e+\) (repeat at least once)
- \(!e\) (complement) = \(\Sigma * \setminus e\)
- \(e_1 & e_2\) (intersection) = \(!(!e_1 | !e_2)\)